INTRODUCTION TO QUANTUM INFORMATION SCIENCE

ARTUR EKERT & ZHENYU CAI

Questions Label: A - Bookwork B - Standard C - Challenging/Optional

4.1.B Completely positive maps. Any physically admissible operation on a qubit
is described by a completely positive map which can always be written as

00 =Y AroAf,
k

where matrices Ay satisfy ) A;JEAk =1

(1) Show that this map preserves positivity and trace. Show that any composi-
tion of completely positive maps is also completely positive.

(2) A qubit in state ¢ is transmitted through a depolarising channel that effects
a completely positive map

o— (1—plo+ g ((fxgax + oyooy + azgaz) ’

for some 0 < p < 1. Show that under this map the Bloch vector associated
with ¢ shrinks by the factor (3 —4p)/3.
Solution:
(1) e Positivity preserving;:

Here we simply want to prove A preserves positivity instead of prov-
ing its complete positivity. Since p > 0, we have p = MM'. Hence,
App Al = (AM) (AeM)" > 0, which means Y Agp Al > 0.

e Trace preserving:
Tr(A(p)) = Tr (Z AkpAI> =Tr (Z A;Mw) = Tr(p)
k k

e Composing two CP map gives another CP map:
A(B(p)) = Y AjBipB{ AT =) CxpCl
ik ik
with
Cjk = A]'Bk.
We also have

]ch:}kcjk = ;BZ (;A}Aj) By = 1.

(2) It is possible to do it via direct explicit calculation. The arguments below
will give us a bit more perspective into the channel.

Rewrite the depolarising channel as:

Dy=(1-q)I+7(I+X+Y+2)=(1-q)I+qD
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where g = 3p. Here Dy = 1 (Z+ X + Y + Z) is simply the completely de-
polarising channel that will completely randomised any input single-qubit
state and turn them into the maximally mixed state:

1
Di(p) = i (o+ XpX +YpY + ZpZ) = 5

Hence, when the depolarising channel act on the state p, we have:

Dy(p) = (1 —q)p+qD1(p) = (1 —9)p + qé.

i.e. the resultant state is a probabilistic mixture of 1 — g probability of the
original state (Bloch vector 5) and g probability of the maximally mixed state
(Bloch vector 0). Hence, the resultant state simply have the Bloch vector

(1—9)s.

Returning to our question, we have g4 = 3p. Hence, the Bloch vector is
shrunk by a factorof 1 —g =1 — %p.

42B Positive but not completely positive maps.  Consider a map N, called
universal-NoT, which acts on single qubit density matrices and is defined by its

action on the identity and the three Pauli matrices Any 2 x 2 matrix can be written as a linear
composition of the identity and the three
Pauli matrices as discussed in Question 1.1.
N@) =1 N(ox)=—-0x N(oy)=—-0y N(0oz)=—02

(1) Describe the action of this map in terms of the Bloch vectors.

(2) Explain why N, acting on a single qubit, maps density matrices to density
matrices.

(3) The joint state of two qubits is described by the density matrix
p=1 101+ Q0 —0y®0y+0; D 03),
Apply N to the first qubit leaving the second qubit intact. Write the result-
ing matrix and explain why A is not a completely-positive map.
Solution:

(1) We have

It maps a Bloch vector § to —5.

(2) If § is a valid Bloch vector that satisfy |s| < 1, then —§ is also a valid Bloch
vector.

(3) To show N is completely positive we need to show that its corresponding
Choi matrix is positive. To show that N is not completely positive, we only
need to find an input state such that after it pass through N/, the output
matrix is not positive and thus is not a valid density matrix. Such an input
state is given by the problem and the corresponding output state is:

N(P)Z (1®1—0x®0x+0y®0y—az®az).

I
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It is easy to verify that the eigenstates of N/ (p) are the four Bell states, within
which the eigenvalue of [¥q) = % (]00) + |11)) can be obtained by
1

N(p) [¥oo) = WG (11— 0y @0y + 0y @0y — 0z @ 03) (|00) + [11))

[Foo) — [Yoo) — [Foo) — [Yo0))

IS

1
=~ [¥g).
5 [Yoo)

Since the eigenvalue is negative, NV (p) is not positive and thus N is not
completely positive.

43.B Approximate cloning. Consider a hypothetical universal quantum cloner
that operates on two qubits and on some auxiliary system. Given one qubit in any
quantum state |¢) and the other one in a prescribed state |0) it maps

[9) 10) [R) = [9) [9) |R"),

where |R) and |R’) are, respectively, the initial and the final state of any other
auxiliary system that may participate in the cloning process (|R’) may depend on

¥))-

(1) Show that such a cloner is impossible.

But supposed we are willing to settle for an imperfect copy? It turns out that the
best approximation to the universal quantum cloner is the following transformation

|¢>m>m>H>¢2|¢H¢H¢>+\/Q0¢>Mﬁ>4—wﬁ>|¢0]¢l>

where |l/JJ‘> is a normalised state vector orthogonal to |¢) and the auxiliary system
is another qubit.

(2) Given the transformation above explain why the reduced density matrices
of the first and the second qubit must be identical after the transformation.

(3) Show that the reduced density matrix of the first (and the second) qubit can
be written as

o =2 Il + 2 |w (v

(4) What is the probability that the clone in state p will pass a test for being in
the original state |i)?

(5) What is the relation between the Bloch vectors of |i)(y| and p?

Solution:

(1) Remember that any quantum channel on a subsystem can be modelled us-
ing a unitary operation on the extended quantum system including the en-
vironment. Since here we have explicitly include the environment with the
initial state |R), we can write the cloner as a unitary operator U that per-
forms:

U ) [0) [R) = [9) [¢) [R)

To clone another state |¢) using the same cloner (since it is universal), we
have:

) [0} [R) = I¢) |9) |R")
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Taking the inner product between the two equation we have:
(RI (O] (gl UTU [y} [0} |R) = (R"| (¢] (¢lw} 9} [R")
(#ly) = (ply)* (R"|R')

which means that (¢|) = (R”|R’) =1 or (¢|ip) = 0, which does not hold
for any two arbitrary state |i) and |¢).

()

¥) = ﬁm ) l9) + \E(w o)+ [ ) 19) ot

The state remains unchanged under the exchange of the first two qubits,
thus their reduced density matrix would be the same.

(3) Tracing out the third qubit we simply have:

2w tpl+ ¢ (Jpet) +|ote)) ((owt] + (v'o)).

Then tracing out the second qubit we have:
2 1 1 \\/, 1| 5 1) \/ 1
S+ 1o+ 2 e ) (v = 2ol + 2 vt ) (v

. 5
(4) The probability that the cloned state pass the test is 2.

(5) The Bloch vector is in the same direction, but the magnitude is shrunk by a

5 1 _ 2
factor ofg—g—g.

4.4.B CP maps revisited. Any linear transformation (superoperator) T acting on
density matrices of a qubit can be completely characterised by its action on the four
basis matrices |a)(b|, where a,b = 0,1, and can be represented as a 4 x 4 matrix,

- [ T(|0)o]) | T(Jo)1) ] |
T([10]) | T(1)(1])

Write down T for:
(1) transposition, ¢ — o7,

(2) depolarising channel, ¢ — (1 — p)o + & (ox00x + 000y + 0200%), for some
0<p<1

Show that for completely positive maps T matrix T must be positive semidefinite.

Solution:
@
1 0l0o o0
T:<IO><OII1><0>: 0 0]1 0
0y (1] [ [1) (1] 0 1/0 0
0 0/0 1
@)
1-%p 0[]0 1-3p
F 0 3p|oO 0
0 0[%p O
1-3p 0]0 1-3p
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(3) Recall that any completely positive map can be written in terms of Kraus

representation, thus T can be written as:

T(p) = Y AipAl  with ) ATA; =1
1

1

Hence,

7 _ (_LiAil0) (0] AT | ¥, Ai[0) (1] Af
Y A [Ty (O] AT | X A; 1) (1] AT

_ Ai|0) (O] AT | A;]0) (1] A
- C (A A T AT (A
_ Ai]0) | 0 (o[ Af | (11Af
E (o) (O
=Y mmf

with

_ (_Ailo) |0
M= ( Ai1) [0 ) '
Hence, T is completely positive implies that T is positive semi-definite.

On the other hand, is the converse true? That is can we say that if T is
positive (semi-definite), then T is completely positive? Recall that we can
prove that a channel T is completely positive by proving its Choi matrix
(denoted as T,) is positive, where the Choi matrix of a single-qubit channel
T is simply the resultant density matrix after apply T to one of the qubits in
the bell pair |Q) = \Lﬁ (]00) + |11)):

Ten =

—~

I2T)|Q) Q]

1
(reT) Y i) (il

i,j=0

) (Gl @ T([7) ()

N —

:MH

i

| o
f—
=}
=
~
<

7N

~

NI~ NI~ N-

Hence, if T is positive, then the corresponding Choi matrix T, is positive
and the corresponding channel T is completely positive.

4.5.B Quantum error correction.

(1) Draw a quantum network (circuit) that encodes a single qubit state « |0) +

B |1) into the state a |00) + S |11) of two qubits. Here and in the following «
and p are some unknown generic complex coefficients.

(2) Two qubits were prepared in state « |00) + |11), exposed to bit flip-errors,

and then measured with an ancillary qubit, as shown in Fig. 1. The result of
the measurement is x. Can you infer the absence of errors when x = 0? Can
you infer the presence of errors when x = 1? Can you correct any detected
errors?
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_"—
0) —BD—B— x 0) —— X1
0) O—D— 2
Fig.1 Fig.2

Three qubits were prepared in state a |000) + B |111) and then, by mistake, someone
applied the Hadamard gate to one of them, but nobody remembers which one. Your
task is to recover the original state of the three qubits.

(3) Express the Hadamard gate as the sum of two Pauli matrices. Pick up
one of the three qubits and apply the Hadamard gate. How is the state
« |000) + B |111) modified? Interpret this in terms of bit-flip and phase-flip
errors.

(4) You perform the error syndrome measurement shown in Fig. 2. Suppose
the outcome of the measurement is x; = 0, x = 1. How would you recover
the original state? Describe the recovery procedure when x; = 0,x, = 0.

The figure below shows two implementations of a controlled-NoT gate acting on the
encoded states of the three qubit code.

logical logical
qubit 1 qubit 1
ral ) Fan\
logical A logical A
qubit 2 e qubit 2 ~
N A\
N\ U
Implementation A Implementation B

(5) Assume that the only sources of errors are individual controlled-NoT gates
which produce bit-flip errors in their outputs. These errors are independent
and occur with a small probability p. For each of the two implementations
find the probability of generating unrecoverable errors at the output. Which
of the two implementations is fault-tolerant?

Solution:
(1) The circuit is
a|0) +p[1) —

’_}a |00) + B |11)
0) —b—

(2) e No Errors:
(a00) + B[11)) |0) = («]00) + B [11)) [0)

e Error on qubit 1:

(«[10) + B01)) |0) = (a [10) + £ [01)) 1)

e Error on qubit 2:

(«]01) + B10)) |0) = (a|01) + B [10)) [1)
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e Two Errors:
(@ [11) + £ 00)) [0) = (a[11) + ]00)) [0)
Outcome x = 0 corresponds to the case of no errors or two errors, thus we
cannot conclude that there is no errors.

Outcome x = 1 corresponds to the case of a single error on qubit 1 or 2,
thus we can conclude that there is an error occurring. However, we cannot
correct it since we do not know which qubit is flipped.

The noiseless state is:
|¢) = «|000) + B |111)

When a random Hadamard error occur to the ith qubit, we have:

Hip = S+ Z) )= 25 Xy, + ZlY) )

ith qubit flipped  phase flipped

where
Zi|p) =« |000) — B|111) Vi
X ) = «[100) + B[011)
Xz ) = a |010) + B|101)
X3 |¢) = «|001) + |110) .

With the starting state above, stepping through the syndrome measurement
circuit

Zi|) or X; [¢)
0) —— [2)
10) & & [

we can obtain the corresponding measurement outcomes using the error
propagation rule of CNOT:
Zi |y
Xi [y
Xa |y
X3y

Suppose the Hadamard error occur to the third qubit, the starting state
Hjs |¢) is a superposition of Z; |{) and X3 |¢), going through the syndrome
measurement circuit, we will either obtain

= {0,0}
= {1,0}
= {1,1}
= {0,1}.

= O O =

e Outcome = {0,0}, state collapse to Z; [¢), correction by applying an
additional Z;.

e Outcome = {0,1}, state collapse to X3 |i), correction by applying an
additional X3.

Similarly for the case of the Hadamard error occur to the other two qubits.



INTRODUCTION TO QUANTUM INFORMATION SCIENCE 8

(5) Given two states encoded in the repetition code:
1) = a1 |000) + B4 [111)
|l/12> = ap ‘000> + B2 ‘111>

There are two two ways to apply logical CNOT between the encoded infor-
mation of both logical qubits above, if the first physical CNOT fail (with
probability p), the error will propagate in the following way:

e Implementation 1:

o " X —
— X i
1) 4 B |91) | r Correctable
B x| = D X
[#2) | T [$2) 1 D E__)__(::— + Corrupted
S &— X i—
Hence, failure of one single physical component (the first CNOT) can
lead to the loss of logical information (corruption of the second logical
qubits). More specifically, when each individual physical CNOT fail
with the probability p, the logical CNOT implemented in this way will
also fail with the probability O(p).
e Implementation 2:
S S T
1) 1 [¥1) 3 + Correctable
& e e
[P2) ] s [P2) ] s + Correctable
VR VR
N\ N\

Hence, failure of one single physical component (physical CNOTs) will
not lead to the loss of logical information. More specifically, when each
individual physical CNOT fail with the probability p, the logical CNOT
implemented in this way will only fail when two physical CNOT fails
simultaneously, and thus will fail with the probability O(p?).

4.6.B Stabilisers define vectors and subspaces.

In Problem sheet 1, we have discuss the concept of 1-qubit Pauli group and also the
concept of stabiliser groups. Here we will further explore these concepts.

The n-qubit Pauli group is defined as
G, ={1,X,Y,Z}*" ® {+1, £i}
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where X, Y, Z are the Pauli matrices. Each element of G, is, up to an overall phase
+1, %4, a tensor product of Pauli matrices and identity matrices acting on the n
qubits.

A unitary S stabilises |¢) if S|¢) = |¢) and we have shown in Problem sheet 1
that the set of stabilisers of a given state |i) forms a group (known as the stabiliser
group). As we will see later, we will generalise the concept of stabiliser groups from
stabilising a state to stabilising a subspace (i.e. stabilising all states in the subspace),
which is called a code space. We shall restrict our attention to stabiliser groups S that
are subgroups of Gj.

(1) Explain why in order to have a non-trivial (non-zero-dimension) code space,
the stabiliser group must be Abelian (i.e. all of its elements commute) and
do not contain the element —1?

(2) Explain why all such stabilisers (except the identity 1) have trace zero and
square to 1.

(3) Show that each stabiliser S has the same number of eigenvectors with eigen-
values +1 and —1, and hence “splits” the 22" dimensional Hilbert space in
half. How would you describe the action of the two operators %(]1 +8S)?

(4) Consider two stabiliser generators, S; and S,. Show that eigenvalue +1
subspace of S; is split again in half by S,. That is, in that subspace exactly
half of the S, eigenvectors have eigenvalue +1 and the other half —1.

(5) If a stabiliser group in the Hilbert space of dimension 2" has a minimal num-
ber of generators, Sy, ...,S;, what is dimension of the stabiliser subspace?

(6) State |0) is stabilised by Z and state |1) is stabilised by —Z. What are sta-
biliser generators for the standard basis of two qubits, i.e. for the states |00),
|01), |10) and |11)? What are stabiliser generators for each of the four Bell
states?

(7) Construct stabiliser generators for an n = 3, k = 1 (n physical qubits encod-
ing k logical qubits) code that can correct a single bit flip, i.e. ensure that
recovery is possible for any of the errors in the set £ = {111, X11, 1X1, 11X }.
Find an orthonormal basis for the two-dimensional code subspace.

(8) Describe the subspace fixed by the stabiliser generators X ® X ® 1 and 1 ®
X ® X and its relevance for quantum error correction.

(9) Let S; and S; be stabiliser generators for a two qubit state |ip). The state is
modified by a unitary operation U. What are the stabiliser generators for

Uly)?
(10) Step through the circuit

o) {H——
0) o{s}—

writing down quantum states of the two qubits after each unitary opera-
tion and their respective stabiliser generators. How would you describe the
action of the three gates, H, S and controlled-NoOT, in the stabiliser language?

Solution:
(1) We will use |¢) to denote an arbitrary state in the code space.

If —1 is in the stabiliser group, we have:

—L{y) =)

Hint: Show that tr 1 (14 51)S, = 0.

We often drop the tensor product symbol,
e.g. 1® X ®1 = 1X1. For commonly used
single-qubit gates, sometimes we simply use
subscripts to denote which qubits they acts
oneg 1®X®I1=X;or
X®1®Z=X1Z;.

Here S is a phase gate:
[0) = |0) and |1) —i|1).
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which can only be true if ) = 0, i.e. we have a trivial code space.

Given any two elements S, 5" € S, since they are both elements of the Pauli
group, they either commute or anti-commute. If they anti-commute, we
have:

) = SS'|p) = =S'S[p) = — |y)

which again can only be true if |)) = 0, i.e. we have a trivial code space.
Hence, to have a non-trivial code space, they must commute.

Trace of tensor product is the product of traces:
Tr(A®B) = Tr(A) Tr(B)

Hence, any Pauli operator that is not the tensor product of identities will
have zero trace.

Within the Pauli group, the elements within +i phase will square to —1,
while the rest will square to 1. Since we know that —1 is not in the stabiliser
group, the elements in the stabiliser group can only square to 1.

Since S2 = 1, we know that all of its eigenvalues are A; = £1. Since any
non-identity S is trace zero: )} ; A; = 0, it must have the same number of 41
eigenvectors and —1 eigenvectors.

% are the projection operators for the S = +1 eigen-subspaces.

The effective action of S, within the +1-eigenspace of S; can be represented
by:
1+ 5 S 1+ 5
2 7?2

Taking the trace we have:

(S ) = (S ) = 5 (1(S) + TH(515)) =0 for S, £ 52

©)

(6)

2 2 )

Hence, within the +1-eigenspace of S1, S, must have the same number of
+1 eigenvectors and —1 eigenvectors. Hence, the +1-eigenspace of S; is
split in half by S,.

S will split a dim-2" space into two dim-2"~! eigenspace and we will only
focus on one of them, which is the +1 eigenspace of S;. The +1 eigenspace
of Sy, which is of dim 2"~!, will again split in half by S,, thus the joint
+1 eigenspace for both S; and S, is of dimension 2"~2. Following simi-
lar arguments, the joint +1 eigenspace for the set of stabiliser generators
{51,852, -+ ,S} is of dimension 2" .

The stabiliser generators for the standard two-qubit basis:

R VAW Y
01) :  {Z1, -2}

)i =21, 22}

)i =71, -2}
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The stabiliser generators for the bell states:

\2 (100) + 1)) {Z1Za, X1 X5}
510 +10) (-2 X%}
510~ 10)) (-2 -XiXs)
75 100) = [10) {212 -}

(7) Stabiliser generators: {Z1Z,, Z,Z3}. Basis states: {|000),|111)}.

(8) It is the subspace spanned by {|+ + +),|— — —)}, which can be used to

correct single-qubit phase-flip (Z) errors.
(9) For a state |¢) is stabilised by {S;}:
Sily) =1ly) Vi,
then U |) is stabilised by {US;U"}
(usiu®) uly) = usily) =uly) i,

(10)
1 0
5= (0 i)
H 1 cnotr. 1 S 1 )
100) — 7 (10) +11))[0) —— 7 (100) +[11)) = 7 (100) +111))

The starting state |00) is stabilised by the set of stabiliser generators {Z1, Z, }.
Following (10), the stabiliser generators will evolve through the circuit in the

following way:

H
{Z1, 2y} =5 {H1Z1Hy, H1ZoHe } = {Xq, 20}

CNOT, {CNOT - X7 - CNOT,CNOT - Z, - CNOT} = {X1Xp, Z1Z>}

S
22 (89X X283,80721 7,83} = {X1Ya, 2125}

4.7.B Shor’s 9-qubit code. Use 8 stabiliser generators for Shor’s 9-qubit code and
explain why this code can correct an arbitrary single-qubit error. In fact, it can also
correct some multiple-qubit errors. Which of the following errors can be corrected
by the nine-qubit code: X1X3, XoX7 , X5Z¢ , Z5Z¢ , Yo Zg?

Solution: Recall that the 9-qubit Shor code and has the set of stabiliser generators:
{212y, 23275, 7475, Z5Z¢, 2778, ZsZo, X1X2X3X4X5Xe, X4X5XeX7XsXo}.
Hence, Z5Z; is a stabiliser that would act trivially on our code state.

The 9-qubit Shor code is just putting a bit-flip code within a phase-flip code. Hence,
the block of qubit 1,2,3 would form a bit flip code and any single-qubit bit-flip occur
within block of qubit 1,2,3 can be corrected. Similarly for the block of qubit 4,5,6
and for the block of qubit 7,8,9.

X1 X3 cannot be corrected since these are two bit-flip errors within the block of qubit
1,2,3.

X, Y, or Z; represents X, Y, or Z applied to
the i-th qubit.
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X5 X7 can be corrected since these are one bit-flip error within the block of qubit
1,2,3 and one bit-flip within the block of qubit 7,8,9.

Now since the phase-flip code is the upper layer and span all of 9 qubits, any
single-qubit phase-flip on any of the 9 qubits can be corrected.

X5Z4 is a single-qubit bit-flip error that can be corrected by the block of qubit 4,5,6,
and a single-qubit phase-flip error that can be corrected by the phase flip code.

Y>Zg o Xy - ZpZg, which means two phase-flip errors within the code, which cannot
be corrected.

Fun question: does our conclusion change if we put phase flip code under the
bit-flip code instead?



