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ARTUR EKERT & ZHENYU CAI

Questions Label: A - Bookwork B - Standard C - Challenging/Optional

3.1.B Entanglement and Bell. A source repeatedly generates two entangled qubits
in the state |Ω〉 ∈ C2 ⊗C2,

|Ω〉 = 1√
2
(|00〉+ |11〉).

One qubit is sent to Alice and one to Bob.

(1) When Alice measures her qubit in the standard Z basis, she instantaneously
knows whether Bob, who may be miles away, will observe outcome 0 or 1
when he measures his qubit in the Z basis. Explain why these correlations
cannot be used for instantaneous communication but they can be used for
generating cryptographic keys.

(2) Show that for any two operators A, B ∈ B(C2), we have

〈Ω| A⊗ B |Ω〉 = 1
2

tr AT B.

(3) Let A and B be two observables measured by Alice and Bob, respectively,

A = cos αZ + sin αX, and B = cos βZ + sin βX, (1)

where X and Z are the Pauli operators. Show that

〈Ω| A⊗ B |Ω〉 = cos(α− β).

What is the probability that the results registered by Alice and Bob upon
measuring these observables are identical?

Let A1, A2, B1 and B2 be the observables defined by using the angles α1 = π
2 , α2 = 0,

β1 = π
4 and β2 = 3π

4 (respectively) in Eq. (1). Alice and Bob perform a statistical test
(known as the CHSH test) in which Alice repeatedly measures either A1 or A2, and
Bob either B1 or B2. For each run they choose, randomly and independently from
each other, which observable to measure, and then check whether the following
conditions are satisfied:

A1 = B1, A1 = B2, A2 = B1, A2 6= B2. (2)

In each run they are able to check only one of the four conditions depending on the
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pair of observables they choose to measure.

(4) Show that their probability Ps of success (i.e. the asymptotic fraction of runs
in which they find that the outcomes agree with the conditions in Eq. (2)) is
given by Ps = cos2 π

8 .

The CHSH test described above can be performed using two devices, A and B,
with A being a “black box” of unknown design that has two settings A1 and A2,
and similarly for B with the settings being B1 and B2. At each run of the device A
or B for a given setting, an outcome of ±1 is generated. The probability of success
in any such CHSH test cannot exceed Ps = cos2 π

8 . The maximum value is achieved
only when the settings correspond to the measurements on qubits in state |Ω〉, as

1
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described above (modulo some simple relabelling). The test is rigid — there is no
other way to maximise the probability of success.

(5) An adversary, Eve, who manufactured, pre-programmed, and sold the two
devices to Alice and Bob, claims that for each run of the CHSH test she has
assigned numerical values ±1 to A1, A2, B1, and B2 so that the outcomes
are predetermined. Alice and Bob run the CHSH test using their unreliable
devices and obtain Ps ≈ 0.85. Is the claim from Eve true?

(6) Would the CHSH test be conclusive if Alice and Bob, in their “random”
choices of measurements (A1 or A2 for Alice, and B1 or B2 for Bob), relied
on random number generators supplied by their adversary Eve?

Solution: See Chapter 9 of the online book and Lecture 5.9.

(1) No instantaneous communication since Alice and Bob cannot control the
measurement outcome, i.e. the outcome is random to each of them.

However, this randomness is shared between Alice and Bob, and such a
shared randomness can be used to generate shared cryptographic keys for
encoding and decoding messages to achieve secure classical communication.

(2)

|Ω〉 = 1√
2

1

∑
i=0
|ii〉

〈Ω| A⊗ B |Ω〉 = 1
2

1

∑
i,j=0
〈jj| A⊗ B |ii〉 = 1

2

1

∑
i,j=0
〈j| A |i〉 〈j| B |i〉

=
1
2

1

∑
i,j=0

AT
ij Bji =

1
2

Tr
(

AT B
)

Note that it is AT not A†.

(3) Z and X are both symmetric: ZT = Z, XT = X.

〈Ω| A⊗ B |Ω〉 = 1
2

Tr
(

AT B
)

=
1
2

Tr[(cos αZ + sin αX) (cos βZ + sin βX)]

=
1
2

Tr[cos α cos β1 + sin α sin β1 + cos α sin βZX + sin α cos βXZ]

Using Tr(1) = 2 and Tr(XZ) = Tr(ZX) = 0, we have:

〈Ω| A⊗ B |Ω〉 = cos α cos β + sin α sin β = cos(α− β)

Since A2 = 1 and Tr(A) = 0, we know that the eigenvalue of A is ±1 We can also make use of the fact that
A = ZeiαY = e−i α

2 Y Zei α
2 Y

i.e. the observable A is simply the
observable Z transform by an α-rotation
around the Y axis in the Bloch sphere.
Similarly, we have:

B = ZeiβY = e−i β
2 Y Zei β

2 Y

and similarly for B (can also obtain their eigenvalues via direct calculation).
Hence, A ⊗ B is an observable that will take the value +1 when the mea-
surement outcomes of A and B are the same and −1 otherwise. Given the
state |Ω〉, denoting the probability of the observable A⊗ B takes the value
±1 as P±1, we have P+1 + P−1 = 1 and

〈Ω| A⊗ B |Ω〉 = (+1)× P+1 + (−1)× P−1 = cos(α− β)

P+1 − (1− P+1) = cos(α− β)

Hence,

P+1 =
cos(α− β) + 1

2
= cos2

(
α− β

2

)

https://qubit.guide/9-bells-theorem.html#bells-theorem
https://www.youtube.com/watch?v=xFj9Mf9LGso&list=PLkespgaZN4gmu0nWNmfMflVRqw0VPkCGH&index=46
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(4) In each run they are equally likely to choose one of the following pairs of
observables to measure

{A1, B1}, {A1, B2}, {A2, B1}, {A2, B2}
and the condition (2) is fulfilled when the corresponding measurement out-
come is:

A1 ⊗ B1 = +1, A1 ⊗ B2 = +1, A2 ⊗ B1 = +1, A2 ⊗ B2 = −1.

Hence, the success probability is:

Ps =
1
4
[P+1(A1, B1) + P+1(A1, B2) + P+1(A2, B1) + P−1(A2, B2)]

=
1
4

[
cos2

(
α1 − β1

2

)
+ cos2

(
α1 − β2

2

)
+ cos2

(
α2 − β1

2

)
+ sin2

(
α2 − β2

2

)]
=

1
4

[
cos2

(π

8

)
+ cos2

(π

8

)
+ cos2

(π

8

)
+ sin2

(
3π

8

)
︸ ︷︷ ︸

cos2( π
8 )

]

= cos2
(π

8

)
(5) If we assigned a set of values (±1) for our four variable {A1, A2, B1, B2},

then at least one of the four conditions in Eq. (2) will be violated. Thus as
we randomly choose one possible pair of observables to measure, which is
effectively randomly selecting one of the four conditions in Eq. (2) to check
if it is satisfied, we will only have at most 3/4 success probability:

Ps =
3
4

.

Since Ps ≈ 0.85 ≈ cos2(π
8
)
, we know that Eve has no knowledge about

the values of the observables prior to their measurement, and the measure-
ment results from the devices should be generated from genuine quantum
measurement of the observables on the entangled qubits in the state |Ω〉.

(6) In this way, Eve essentially control the probability distribution of choosing
which pair of observables {Ai, Bj} to measure and thus which one of the
four conditions in Eq. (2) will be checked. In this way, if Eve assign a set
of predetermined values to the observable, she can tune Ps to any value she
want by simply tuning the probability of checking the violated condition in
Eq. (2). Hence, the CHSH test would be meaningless in this way.

3.2.B Playing with conditional unitaries. The swap gate S on two qubits is
defined first on product vectors, S : |a〉 |b〉 7→ |b〉 |a〉 and then extended to sums of
products vectors by linearity.

(1) Show that the four Bell states 1√
2
(|00〉 ± |11〉), 1√

2
(|01〉 ± |10〉) are eigenvec-

tors of S which form the orthonormal basis in the Hilbert space associated
with two qubits. Which Bell states span the symmetric subspace (all eigen-
vectors of S with eigenvalue 1) and which the antisymmetric one (all eigen-
vectors of S with eigenvalue −1)? Can S have any other eigenvalues except
±1?

(2) Show that Π± = 1
2 (1 ± S) are two orthogonal projectors which form the An operator A is a projector iff it is

idempotent: A2 = A.decomposition of the identity and project on the symmetric and the anti-
symmetric subspaces. Decompose the state vector |a〉 |b〉 of two qubits into
symmetric and antisymmetric components.
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(3) Consider the following quantum network composed of the two Hadamard
gates, one controlled-S operation (also known as the controlled-swap or the
Fredkin gate) and the measurement M in the computational basis,

|0〉 H H M

|a〉
S

|b〉

The state vectors |a〉 and |b〉 are normalised but not orthogonal to each other.
Step through the execution of this network, writing down quantum states
of the three qubits after each computational step. What are the probabilities
of observing 0 or 1 when the measurement M is performed?

(4) Explain why this quantum network implements projections into the sym-
metric and the antisymmetric subspaces of the two qubits.

(5) Two qubits are transmitted through a quantum channel which applies the
same, randomly chosen, unitary operation U to each of them. Show that
U ⊗U leaves the symmetric and antisymmetric subspaces invariant.

(6) Polarised photons are transmitted through an optical fibre. Due to the vari-
ation of the refractive index along the fibre the polarisation of each photon
is rotated by the same unknown angle. This makes communication based
on polarisation encoding unreliable. However, if you can prepare any polar-
isation state of two photons you can still use the channel and communicate
without any errors. How can this be achieved?

Solution:

(1) Since S2 = I, we know that the eigenvalue of S should satisfy λ2 = 1, which
means λ = ±1.

• λ = +1 (Exchange Symmetric, Triplet):

|Ψ00〉 =
1√
2
(|00〉+ |11〉)

|Ψ01〉 =
1√
2
(|01〉+ |10〉)

|Ψ10〉 =
1√
2
(|00〉 − |11〉)

• λ = −1 (Exchange Antisymmetric, Singlet)

|Ψ11〉 =
1√
2
(|01〉 − |10〉)

(2) Using

Π± =
I ± S

2
, S2 = I

we have:

Π2
± = Π± (idempotent)

Hence, Π± are projection operators. We can also show that:

Π+Π− = 0
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Hence, the subspaces that Π+ and Π− projecting into are orthogonal to each
other.

Since SΠ± = ±Π±, we know that Π+ is the projector into the exchange
symmetric (λ = +1) subspace while Π− is the projector into the exchange
anti-symmetric (λ = −1) subspace.

We have Π+ + Π− = I, therefore the set of projectors {Π+, Π−} formed
a decomposition of the identity, i.e. the subspaces they represent span the
whole Hilbert space. Hence, any state vector can be decomposed into a
superposition of exchange symmetric and exchange antisymmetric compo-
nents:

|ψ〉 = Π+ |ψ〉︸ ︷︷ ︸
symmetric

+ Π− |ψ〉︸ ︷︷ ︸
antisymmetric

In the case of |ψ〉 = |ab〉, we have:

|ab〉 = Π+ |ab〉+ Π− |ab〉 = |ab〉+ |ba〉
2︸ ︷︷ ︸

symmetric

+
|ab〉 − |ba〉

2︸ ︷︷ ︸
antisymmetric

(3) Stepping through the circuit:

|0〉 |ab〉 H−→ ∝ (|0〉+ |1〉) |ab〉
C-swap−−−−→ ∝ |0〉 |ab〉+ |1〉 |ba〉

H−→ ∝ (|0〉+ |1〉) |ab〉+ (|0〉 − |1〉) |ba〉
∝ |0〉 (|ab〉+ |ba〉) + |1〉 (|ab〉 − |ba〉)

Adding in the normalisation constant, the end state is:

|ψ〉 = |0〉 |ab〉+ |ba〉
2

+ |1〉 |ab〉 − |ba〉
2

= |0〉 (Π+ |ab〉)︸ ︷︷ ︸
symmetric

+ |1〉 (Π− |ab〉)︸ ︷︷ ︸
antisymmetric

Here we see that measuring 0 on the first qubit will get us the symmetric
component for the other two qubits, while measuring 1 will get us the anti-
symmetric component.

To obtain the probability of measuring 0 on the first qubit (control qubit),
let us denote the projector of the first qubit into the 0 and 1 state as:

Π0 = |0〉〈0| ⊗ I, Π1 = |1〉〈1| ⊗ I.

The probability of measuring 0 for the first qubit is simply the expectation
value of the projector Π0:

P0 = 〈ψ|Π0 |ψ〉 = 〈ab|Π+ |ab〉 = 1 + 〈ab|ba〉
2

=
1 + |〈a|b〉|2

2
and the corresponding output state after the measurement is simply:

Π0 |ψ〉√
P0

= |0〉 Π+ |ab〉√
P0

.

Hence, the corresponding output state of the target qubits is

Π+ |ab〉√
P0

=
1

2
√

P0
(|ab〉+ |ba〉)

which is simply the projection of |ab〉 into the exchange symmetric subspace.
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Similarly, the probability of measuring 1 for the first qubit is:

P1 = 〈ψ|Π1 |ψ〉 = 〈ab|Π− |ab〉 = 1− 〈ab|ba〉
2

=
1− |〈a|b〉|2

2
and the corresponding output state after the measurement is simply:

Π1 |ψ〉√
P1

= |1〉 Π− |ab〉√
P1

.

Hence, the corresponding output state of the target qubits is

Π− |ab〉√
P1

=
1

2
√

P1
(|ab〉 − |ba〉)

which is simply the projection of |ab〉 into the exchange anti-symmetric sub-
space.

Note that such a Z measurement on the controlled qubit is equivalent to the
result of directly perform S measurement on |ab〉.

(4) Discussed above.

(5) If |ψ〉 is in the S = s symmetry subspace:

S |ψ〉 = s |ψ〉 ,

then using the fact that U ⊗ U is invariant under the action of swap S:
[S, U ⊗U] = 0, we have:

S (U ⊗U) |ψ〉 = (U ⊗U) S |ψ〉 = s (U ⊗U) |ψ〉
i.e. the state U⊗U |ψ〉 is also in the S = s symmetry subspace, same as |ψ〉.

(6) We can represent one logical qubit of information using a pair of photon
with the following mapping:

|0〉 ⇒ 1
2
√

P0
(|ab〉+ |ba〉)

|1〉 ⇒ 1
2
√

P1
(|ab〉 − |ba〉)

Z meas.⇒ S meas.

As proven in (5) the measurement result of S will not be affected by random
U⊗U, thus our information is preserved through the noisy cable by sending
through a pair of photons each time to encode one qubit of information.

3.3.A Simon’s algorithm. Let f : {0, 1}n 7→ {0, 1}n be a 2-to-1 function such Recall that the Hadamard transform is
defined as |x〉 7→ 1√

2n ∑y∈{0,1}n (−1)x·y |y〉 ,
where x, y ∈ {0, 1}n and the product
x · y = x1y1 + x2y2 + . . . + xnyn (mod 2)

that f (x⊕ s) = f (x), where s is a binary string of length n which is different from
zero (s 6= 0n) and x⊕ s is a bit-wise addition modulo 2. In the network below the
H operations denote the Hadamard transform on n qubits, M is a qubit by qubit
measurement in the standard computational basis and the f operation represents a
quantum evaluation of f ; |x〉 |y〉 7→ |x〉 |y⊕ f (x)〉.

n qubits in state |0〉⊗n

(1st register) H H M

n qubits in state |0〉⊗n

(2nd register)
f

(1) What is the state of the two registers right after the quantum function eval-
uation?
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(2) The second register is measured qubit by qubit in the computational basis
and a binary string k ∈ {0, 1}n is registered. What is the state of the first
register after the measurement?

(3) Subsequently the Hadamard transform is performed on the first register, fol-
lowed by a measurement in the computational basis. The result is a binary
string, z. Show that z · s = 0.

(4) Suppose the function f is presented as an oracle. How many calls to the
oracle are required in order to find s? How does it compare with a clas-
sical algorithm for the same problem? Provide rough estimates, detailed
derivations are not required.

Solution: See Sec. 10.5.3 of the online book.

3.4.B Controlled unitaries revisited. Consider the following quantum network
composed of the two Hadamard gates, one controlled-U operation and the mea-
surement M in the computational basis,

|0〉 H H M

|u〉 U

The top horizontal line represents a qubit and the bottom one an auxiliary physical
system.

(1) Suppose |u〉 is an eigenvector of U, such that U |u〉 = eiα |u〉. Step through
the execution of this network, writing down quantum states of the qubit and
the auxiliary system after each computational step. What is the probability
for the qubit to be found in state |0〉?

Regardless the state of the auxiliary system, the probability P0 for the qubit to be
found in state |0〉, when the measurement M is performed, can be written as

P0 =
1
2
(1 + v cos φ) ,

where v and φ depend on U and on the initial state of the auxiliary system.

(2) Show that for an arbitrary pure state |u〉 of the auxiliary system the quanti-
ties v and φ are given by the relation veiφ = 〈u|U |u〉.

(3) Suppose the auxiliary system is prepared in a mixed state described by the
density operator ρ,

ρ =
n

∑
k=1

pk |uk〉〈uk|

where vectors |uk〉 form an orthonormal basis, pk ≥ 0 and ∑n
k=1 pk = 1.

Show that v and φ are given by veiφ = tr(ρU).

(4) How would you modify the network in order to estimate tr(ρU)? How
would you estimate tr U?

Solution:

https://qubit.guide/chapter10.html#simons-problem
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(1)

|0〉 |u〉 H⊗I−−→ 1√
2
(|0〉+ |1〉) |u〉

Control−U−−−−−−→ 1√
2

(
|0〉 |u〉+ eiα |1〉 |u〉

)
=

1√
2

(
|0〉+ eiα |1〉

)
|u〉

H⊗I−−→ 1
2

[
(|0〉+ |1〉) + eiα (|0〉 − |1〉)

]
|u〉

=
1
2

[(
1 + eiα

)
|0〉+

(
1− eiα

)
|1〉
]
|u〉

≡
(

cos
(α

2

)
|0〉 − i sin

(α

2

)
|1〉
)
|u〉

The control-U plus the auxiliary qubits |u〉 essentially performs e−i α
2 Z on the

control qubit. Hence, the full circuit essentially performs He−i α
2 Z H = e−i α

2 X

on the control qubit.

The probability of measuring 0 is simply cos2( α
2
)
.

(2)

|0〉 |u〉 H⊗I−−→ 1√
2
(|0〉+ |1〉) |u〉

Control−U−−−−−−→ 1√
2
(|0〉 |u〉+ |1〉U |u〉)

H⊗I−−→ 1
2
[(|0〉+ |1〉) |u〉+ (|0〉 − |1〉)U |u〉]

=
1
2
[|0〉 (I + U) |u〉+ |1〉 (I −U) |u〉]

= |ψ〉

The probability of measuring |0〉 is just the expectation value of the 0 state
projector on the control qubit Π0 = |0〉〈0| ⊗ I:

P0 = 〈ψ|Π0 |ψ〉 =
(

1
2

)2

〈u|
(

I + U†
)
(I + U) |u〉

=
1
4

(
2 + 〈u|U |u〉+ 〈u|U† |u〉

)
=

1 + Re{〈u|U |u〉}
2

Compare to P0 = 1+v cos φ
2 , we see that 〈u|U |u〉 = veiφ.

(3) As shown in (2), using the auxiliary state |uk〉 will measure 0 with the prob-
ability:

P0,k =
1 + Re{〈uk|U |uk〉}

2
.

When we use the set of auxiliary states {|uk〉} according to the probability
distribution {pk}, the resultant probability of measuring 0 will just be a
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weighted sum of P0,k:

P0 = ∑
k

pkP0,k =
1 + Re{∑k pk 〈uk|U |uk〉}

2

=
1 + Re{Tr(∑k pk |uk〉 〈uk|U)}

2

=
1 + Re{Tr(ρU)}

2

Compare to P0 = 1+v cos φ
2 , we see that Tr(ρU) = veiφ.

(4) We see in (3) that we can estimate Re{Tr(ρU)} using our original circuit.
In fact, if we measure the Z observable for the control qubit at the end, we
have:

〈Z〉 = (+1)× P0 + (−1)× P1

= 2P0 − 1

= Re{Tr(ρU)}
If U is Hermitian, then Tr(ρU) will be real: Re{Tr(ρU)} = Tr(ρU), and this
will be our answer.

In the more general case in which Tr(ρU) is complex, in order to obtain
Im{Tr(ρU)}, we will look at our original circuit from another perspective.

In our original scheme with the auxiliary qubit in the state |u〉, before the
measurement we have the state:

|ψ〉 = 1√
2
(|+〉 |u〉+ |−〉U |u〉) .

If we can measure |+〉〈−| on the control qubit, then the expectation value is
simply

〈φ| (|+〉〈−| ⊗ I) |φ〉 = 1
2
〈u|U |u〉

which is exactly proportional to what we want.

But how do we measure |+〉〈−|? Remember that any matrices can be de-
composed into a linear sum of Pauli matrices:

|+〉〈−| = 1
2
(|0〉〈0| − |1〉〈1| − |0〉〈1|+ |1〉〈0|) = 1

2
(Z− iY)

Hence, the expectation value we want is simply:

〈u|U |u〉 = 2 〈ψ| (|+〉〈−| ⊗ I) |ψ〉
= 〈ψ| (Z⊗ I) |ψ〉︸ ︷︷ ︸

Re{〈u|U|u〉}

+i 〈ψ| (−Y⊗ I) |ψ〉)︸ ︷︷ ︸
Im{〈u|U|u〉}

Here 〈ψ| (Z⊗ I) |ψ〉 is obtained by measuring Z on the control qubit, which
can be carried out using our original circuit. It will be the real part Re{〈u|U |u〉}
as discussed.

Here 〈ψ| (−Y⊗ I) |ψ〉) is obtained by measuring Y on the control qubit and
multiply the result by (−1). It will be the imaginary part Im{〈u|U |u〉}.
Following similar arguments in (3), by using a probabilistic mixture of aux-
iliary states ρ = ∑k pk |uk〉 〈uk|, we can use the same circuits to obtain
Re{Tr(ρU)} and Im{Tr(ρU)}.
To estimate Tr(U), we simply set the auxiliary qubits to be in the maximally
mixed state ρ = I

d where d is the dimension of the auxiliary system.
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3.5.B Deutsch’s algorithm and decoherence. Deutsch’s algorithm with an oracle
f : {0, 1} 7→ {0, 1}, is implemented by the following network

|0〉 H H M

|0〉 − |1〉 f |0〉 − |1〉

Suppose that in between the Hadamard gates the top qubit undergoes decoherence
by interacting with an environment in state |e〉,

|0〉 |e〉 7→ |0〉 |e0〉 , (3)
|1〉 |e〉 7→ |1〉 |e1〉 , (4)

where |e0〉 and |e1〉 are the new states of the environment which are normalised but
not necessarily orthogonal, 〈e0|e1〉 = v for some real v. How reliably can you tell
whether f is constant or balanced?

Solution:

Deutsch Algorithm without Environmental Noise:

• Oracle: Some one-bit-to-one-bit function f that is either:

(1) Constant: f (0) = f (1).

(2) Balanced: f (0) 6= f (1).

• Task: Find out f is constant or balanced.

Using the oracle operation U f with the answer bit in the state |−〉 will essentially
storing the answer in the sign of the basis:

U f |~x〉 |−〉 = (−1) f (~x) |~x〉 |−〉
we see that the target qubit remained unchanged and thus we will omit the target
qubit from here on and focus on only the control qubit.

The overall circuit of the Deutsch algorithm is

|0〉 H−→ 1√
2

∑
k
|k〉

U f−→ 1√
2

∑
k
(−1) f (k) |k〉

H−→ 1
2 ∑

x
∑
k
(−1) f (k)+(kx) |x〉

The probability amplitude of measuring |0〉 is:

A0 = 〈0| 1
2 ∑

x
∑
k
(−1) f (k)+kx |x〉 = 1

2 ∑
k
(−1) f (k) =

{
±1 f is constant
0 f is balanced

Hence, the probability of measuring 0 is:

P0 = |A0|2 =

{
1 f is constant
0 f is balanced

Hence, when the measurement result is 0, f is constant, and otherwise f is balance.

Deutsch Algorithm with Environmental Noise:



INTRODUCTION TO QUANTUM INFORMATION SCIENCE 11

Now suppose the control qubit interact with the environment when we perform U f
such that |k〉 → |k〉 |ek〉, we then have:

|0〉 H−→ 1√
2

∑
k
|k〉

U f−→ 1√
2

∑
k
(−1) f (k) |k〉

env−−→ 1√
2

∑
k
(−1) f (k) |k〉 |ek〉

H−→ 1
2 ∑

x
∑
k
(−1) f (k)+kx |x〉 |ek〉

Now the probability of measuring 0 is just the expectation value of the projection

Note that the state after environment
interation: 1√

2 ∑k (−1) f (k) |k〉 |ek〉 is
normalised. This is because even though
|e0〉 and |e1〉 are not orthogonal to each
other, the full two-qubit states |0, e0〉 and
|1, e1〉 are orthogonal to each other.

operator |0〉〈0| ⊗ I:

P0 =

(
1
2

)2

∑
x,x′

〈
x′
∣∣0〉 〈0|x〉∑

k,k′
〈ek′ |ek〉 (−1) f (k)+ f (k′)+kx+k′x′

=
1
4 ∑

k,k′
〈ek′ |ek〉 (−1) f (k)+ f (k′)

=
1
4

(
2 + (〈e0|e1〉+ 〈e1|e0〉) (−1) f (0)+ f (1)

)
=

1
2

(
1 + (−1) f (0)+ f (1) Re{〈e0|e1〉}

)

=


1+Re{〈e0|e1〉}

2 = 1+v
2 f is constant

1−Re{〈e0|e1〉}
2 = 1−v

2 f is balanced

Following our original strategy of guessing f is constant upon measuring 0, there
is now a 1−v

2 probability that f is actually balanced and we got it wrong.

There are two extremes to look at:

• v = 1: We have the perfect noiseless outcome again.

v = 1 means that |e0〉 = |e1〉 = |e〉. Hence, after interaction with the en-
vironment, the resultant state is

(
1√
2 ∑k (−1) f (k) |k〉

)
|e〉 which is just the

noiseless system tensor with the environment state |e〉. In this case the en-
vironment is not entangled with our system and will not affect our results
at all.

• v = 0: We have a completely random outcome.

v = 0 means that |e0〉 is orthogonal to |e1〉. Hence, after interaction with
the environment, the resultant state 1√

2 ∑k (−1) f (k) |k, ek〉 has maximum en-
tanglement between the system and the environment, it is essentially a bell
state 1√

2 ∑k (−1) f (k) |k, k〉. We know that if we measure out one of the qubit
in a bell state and discard the measurement result, the remaining qubit will
become maximally mixed since the two qubits are completely correlated.
Similarly, in this case since we do not have access to the environment qubit,
our system will have completely random outcome.


