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2.1.B Two-qubit operations. The circuits below show six unitary operations on
two qubits, P(α) =

(
1 0
0 eiα

)
The square root of swap matrix has
something in common with the square root
of not. Start with writing the swap matrix.

H

H H

H

α

β √
s
w

a
p

The first four are described, respectively, by 4× 4 unitary matrices which are tensor
products 1⊗ H, H⊗ 1, H⊗ H and P(α)⊗ P(β). The matrices of the two remaining
gates, known as the square root of swap and controlled-not, stand out as they do
not admit a tensor product decomposition in terms of single-qubit operations. Use
the standard tensor product basis, |00〉, |01〉, |10〉, |11〉, and write down unitary
matrices for each of the six gates.

Solution: Note:

• If not explicitly given, a matrix element is zero.

• Recall the standard notation |0〉 =
(

1
0

)
, |1〉 =

(
0
1

)
.

1⊗ H =

(
1 0
0 1

)
⊗ 1√

2

(
1 1
1 −1

)
=

1√
2


1 1
1 −1

1 1
1 −1

 ;

H ⊗ 1 =
1√
2

(
1 1
1 −1

)
⊗
(

1 0
0 1

)
=

1√
2


1 0
0 1

1 0
0 1

1 0
0 1

−1 0
0 −1

 ;

H ⊗ H =
1√
2

(
1 1
1 −1

)
⊗ 1√

2

(
1 1
1 −1

)
=

1
2


1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

 ;

P(α)⊗ P(β) =

(
1 0
0 eiα

)
⊗
(

1 0
0 eiβ

)
=


1

eiβ

eiα

eiα+iβ

 ;

√
swap =


1 0 0 0
0
0
√

NOT 0
0

0 0 0 1

 =


1

1+i
2

1−i
2

1−i
2

1+i
2

1

 ; CNOT =


1 0
0 1

0 1
1 0

 .
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2.2.B Basic entanglement. Prove that the state of two qubits |ψ〉 = a |00〉 +
b |01〉+ c |10〉+ d |11〉 is entangled iff ad− bc 6= 0. Deduce that the state 1

2 (|00〉+
|01〉+ |10〉+ (−1)k |11〉) is entangled for k = 1 and unentangled for k = 0. Express
the latter case explicitly as a product state.

Solution: We start by decomposing |ψ〉 by pulling out the first qubit:

|ψ〉 = a |00〉+ b |01〉+ c |10〉+ d |11〉 = |0〉 (a |0〉+ b |1〉) + |1〉 (c |0〉+ d |1〉)
The state ψ will be separable when the state of the second qubit on the two brackets
is the same, i.e. if and only if (a |0〉+ b |1〉) ∝ (c |0〉+ d |1〉). This condition is
equivalent to

a
b
=

c
d
⇒ ad− bc = 0

The reason why this is similar to the form of a determinant for a 2-by-2 matrix can
be seen from the Schmidt decomposition in Sec. 5.10.2 of the online book.

For the particular case that |ψ〉 = 1
2

(
|00〉+ |01〉+ |10〉+ (−1)k |11〉

)
, we have a =

b = c = 1/2, d = (−1)k/2, hence

ad− bc =
1
4

(
(−1)k − 1

)
=

{
0, k = 0 ⇒ separable
−1/2, k = 1 ⇒ entangled

The separable state is (k = 0):

|ψ〉 = 1
2
(|00〉+ |01〉+ |10〉+ |11〉) = 1

2
[|0〉 (|0〉+ |1〉) + |1〉 (|0〉+ |1〉)] ≡ |0〉+ |1〉√

2
⊗ |0〉+ |1〉√

2
.

2.3.A Quantum teleportation. Consider the following quantum network (circuit),
containing the Hadamard and the controlled-not gates, You should remember the action of the

Hadamard and the controlled-not gates.

α |0〉+ β |1〉 H |x〉

|0〉 H |y〉

|0〉 |ψ〉

Divide et impera, that is, divide and
conquer, a good approach to solving
problems in mathematics (and in life). Start
with smaller circuits, those surrounded by
the dashed boxes.

The measurement on the first two qubits (counting from the top) gives two binary
digits, x and y. The third qubit is not measured. How does the state of the third
qubit, |ψ〉, depend on the values x and y?

Suppose the three qubits, which look very similar, are initially in a possession of
an absent-minded Oxford student Alice. The first qubit is in a precious quantum
state and this state is needed urgently for an experiment in Cambridge. Alice’s
colleague, Bob, pops in to collect the qubit. Once he is gone Alice realises that by
mistake she gave him not the first but the third qubit, the one which is entangled
with the second qubit (see the figure below).

https://qubit.guide/5.10-appendices.html#the-schmidt-decomposition
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1

2 3
1√
2
(|00〉+ |11〉)

Alice

Precious qubit

Bob

The situation seems to be hopeless – Alice does not know the quantum state of the
first qubit, Bob is now miles away and her communication with him is limited to
at most one tweet. However, Alice and Bob are both very clever and attended the
“Introduction to Quantum Information Science” course at Oxford. Can Alice rectify
her mistake and save Cambridge science?

Solution: This is exactly Sec. 5.6.2 of the online book.

2.4.B Partial traces and reduced density operators. Consider two qubits in the
quantum state

|ψ〉 = 1√
2

[
|1〉 ⊗

(√
2
3
|0〉+

√
1
3
|1〉
)
+ |0〉 ⊗

(√
2
3
|0〉 −

√
1
3
|1〉
)]

. (1)

You obtain reduced density operators by
taking partial traces, e.g. the partial trace
over HB is defined for the tensor product
operators,
trB (A⊗ B) = A (tr B)
and extended to any other operator on
HA ⊗HB by linearity. See the Prerequisite
Material.

(1) What is the density operator ρ of the two qubits corresponding to state |ψ〉?
Write it in the Dirac notation and explicitly as a matrix in the computational
basis {|00〉 , |01〉 , |10〉 , |11〉}.

(2) Find the reduced density operators ρ1 and ρ2 of the first and the second
qubit, respectively. Again, write them in the Dirac notation and as matrices
in the computational basis.

Solution:

(1) The state is:

|ψ〉 = 1√
3
|00〉 − 1√

6
|01〉+ 1√

3
|10〉+ 1√

6
|11〉 ⇒ 1√

6


√

2
−1√

2
1


The density matrix is:

ρ = |ψ〉〈ψ| ⇒ 1
6


√

2
−1√

2
1

(√2 −1
√

2 1
)
=

1
6


2 −

√
2 2

√
2

−
√

2 1 −
√

2 −1
2 −

√
2 2

√
2√

2 −1
√

2 1


(2) Trace over the first qubit:

1
6


2 −

√
2 2

√
2

−
√

2 1 −
√

2 −1
2 −

√
2 2

√
2√

2 −1
√

2 1

 trace over the 1st qubit
============⇒ 1

6

(
4 0
0 2

)
=

( 2
3 0
0 1

3

)
=

2
3
|0〉〈0|+ 1

3
|1〉〈1|

Trace over the second qubit:

1
6


2 −

√
2 2

√
2

−
√

2 1 −
√

2 −1
2 −

√
2 2

√
2√

2 −1
√

2 1

 trace over the 2nd qubit
=============⇒ 1

6

(
3 1
1 3

)
=

( 1
2

1
6

1
6

1
2

)
=

2
3
|+〉〈+|+ 1

3
|−〉〈−|

https://qubit.guide/5.6-controlled-not.html#quantum-teleportation
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2.5.B Trace distance. The trace norm of a matrix A is defined as

‖A‖tr = tr
(√

A† A
)

.

(1) Show that the trace norm of any self-adjoint matrix is the sum of the absolute
values of its eigenvalues. What is the trace norm of a density matrix?

(2) The trace distance between density matrices ρ1 and ρ2 is defined as

d(ρ1, ρ2) =
1
2
‖ρ1 − ρ2‖tr.

What is the trace distance between two pure states |φ〉 and |ψ〉?

Solution:

(1) By the spectral decomposition, we have:

A = ∑
i

λi |i〉〈i|

A† A = ∑
i
|λi|2 |i〉〈i|

√
A† A = ∑

i
|λi| |i〉〈i|

The trace of an operator is the sum of the operator’s eigenvalues, thus the
trace norm of A is ‖A‖tr = ∑i |λi|. A density matrix only has positive
eigenvalues, and it has trace 1, so the sum of the absolute value of the
eigenvalues is 1.

See Lecture 4.8.

(2) Using |ψ〉 as basis, we have |φ〉 = α |ψ〉+ β |ψ⊥〉, with |α|2 + |β|2 = 1. The
matrix representation of ρ1 − ρ2 is then:

|ψ〉〈ψ| − |φ〉〈φ| =
(

1 0
0 0

)
−
(
|α|2 β∗α
α∗β |β|2

)
=

(
|β|2 −β∗α
−α∗β −|β|2

)
Given that

λ1 + λ2 = Tr(|ψ〉〈ψ| − |φ〉〈φ|) = 0

λ1λ2 = det(|ψ〉〈ψ| − |φ〉〈φ|) = −|β|2
(
|α|2 + |β|2

)
= −|β|2

we have λ = ±|β|. Hence, the trace distance is

d(|ψ〉〈ψ| , |φ〉〈φ|) = |λ1|+ |λ2|
2

= |β| =
√

1− |α|2 =

√
1− |〈φ|ψ〉|2

2.6.B How well can we distinguish two quantum states?. If a physical system is
equally likely to be prepared either in state ρ1 or state ρ2 then a single measurement
can distinguish between the two preparations with the probability at most

1
2
[1 + d(ρ1, ρ2)] .

(1) Suppose ρ1 and ρ2 commute. Use the spectral decomposition of ρ1 and ρ2 This special case is essentially a classical
problem of differentiating between two
probability distributions.in their common eigenbasis and describe the optimal measurement that can

distinguish between the two states. What is the probability of success?

(2) Suppose you are given one of the two, randomly selected, qubits of state |ψ〉
in Eq. (1). What is the maximal probability with which you can determine
whether it is the first or the second qubit?

Solution:

https://www.youtube.com/watch?v=EL0LuhqXzsc&list=PLkespgaZN4gmu0nWNmfMflVRqw0VPkCGH&index=37
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(1) If ρ1 and ρ2 commute, they can be simultaneously diagonalisable:

ρ1 = ∑
i

pi |i〉 〈i| ρ2 = ∑
i

qi |i〉 〈i|

Hence, their trace distance is simply

d(ρ1, ρ2) =
Tr |ρ1 − ρ2|

2
=

∑i |pi − qi|
2

Now suppose we are randomly given one of {ρ1, ρ2} and we want to suc-
cessful guess which is it by performing a measurement on it. The optimal
strategy would be performing a projective measurement onto the set of ba-
sis {|i〉}. When the output is i, then the state is more likely to be ρ1 if pi ≥ qi
and conversely the state is more likely to be ρ2 if pi < qi.

Following such a strategy, if the actual underlying state is ρ1, then we will
have the right guess whenever pi ≥ qi, thus the total probability of success-
fully guessing the right state in this case is then:

P(succ|ρ1) = ∑
pi≥qi

pi

Similarly, we have:

P(succ|ρ2) = ∑
qi>pi

qi

Since we have equal probability of choosing ρ1 and ρ2: P(ρ1) = P(ρ2) =
1
2 ,

the total success probability is:

P(succ) = P(succ|ρ1)P(ρ1) + P(succ|ρ2)P(ρ2)

=
1
2 ∑

pi≥qi

pi +
1
2 ∑

qi>pi

qi =
1
2 ∑

i
max(pi, qi).

Since max(pi, qi) =
1
2 (pi + qi + |pi − qi|), we have

P(succ) =
1
2 ∑

i
max(pi, qi) =

1
2

(
1 + ∑i |pi − qi|

2

)
=

1 + d(ρ1, ρ2)

2

i.e. the trace distance is proportional to the maximum success probability
that we can distinguish between ρ1 and ρ2. This is true even when ρ1 and
ρ2 are not commuting, but in that case, we need to generalise projective
measurement to POVM.

(2)

ρ1 =

( 1
2

1
6

1
6

1
2

)
ρ2 =

( 2
3 0
0 1

3

)

ρ1 − ρ2 =
1
6

(−1 1
1 1

)
Hence:

λ1 + λ2 = Tr(ρ1 − ρ2) = 0

λ1λ2 = det(ρ1 − ρ2) = −
1
18

which means:

λ = ± 1√
18

= ± 1
3
√

2
Hence,

d(ρ1, ρ2) =
Tr |ρ1 − ρ2|

2
=

∑i |λi|
2

=
1

3
√

2
.
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and

P(succ) =
1 + d(ρ1, ρ2)

2
=

1
2
+

1
6
√

2
≈ 0.6.

2.7.B Bloch vectors. Any density matrix of a single qubit can be parametrised by
the three real components of the Bloch vector~s = (sx, sy, sz) and written as

$ = 1
2 (1 +~s ·~σ) ,

where σx, σy and σz are the Pauli matrices, and~s ·~σ = sxσx + syσy + szσz.

(1) Check that such parametrised $ has all the mathematical properties of a
density matrix as long as the length of the Bloch vector does not exceed 1.

(2) Draw the Bloch sphere and mark all the convex combinations of states |0〉
and |1〉, i.e. the states of the form

ρ = p0 |0〉〈0|+ p1 |1〉〈1| ,
where p0 and p1 are non-negative and p0 + p1 = 1. How would you gener-
ate such states?

(3) Draw the Bloch sphere and mark the Pauli eigenstates and all the convex
combinations of the Pauli eigenstates.

(4) A qubit in state |0〉 is modified by a long sequence of randomly selected
Clifford gates. You remember the sequence at first, but as time passes you Remember from Question 1.6 that a Clifford

gate will map any Pauli eigenstate to
another Pauli eigenstate.are less and less certain what it was, until you completely forget it. Explain

why, from your perspective, the final state of the qubit has a Bloch vector
that lies somewhere inside the octahedron with vertices representing the six
eigenstates of the Pauli operators X, Y, and Z. Where is this Bloch vector
when you still remember the Clifford sequence, and where is it when you
have completely forgotten the sequence?

(5) Two qubits are in quantum states described by their respective Bloch vectors,
~s1 and~s2. What is the trace distance between the two quantum states?

Solution:

(1) Properties of Density Matrix:

• Unit Trace: Using Tr(σi) = 0 and Tr(1) = 2, we have Tr(ρ) = 1.

• Positivity: We can explicitly verify the the eigenvalues of ~s ·~σ is ±|~s|.
Hence, the eigenvalues of ρ = 1

2 (1 +~s ·~σ) are simply λ± = 1
2 (1± |~s|).

Since |~s| ≤ 1, we have λ± ≥ 0 and thus ρ is positive.

Alternatively, we know that we can use some unitary transformation U
to rotate the Bloch vector ~s such that it becomes another Bloch vector
~s′ = (|~s|, 0, 0) that aligns with the z-axis:

U~s ·~σU† =~s′ ·~σ = |~s|σz

Since unitary transformation will not change the eigenvalues, we know
that~s ·~σ and |~s|σz have the same eigenvalues, which are ±|~s|. The rest
follows similarly

(2) ρ = p0 |0〉〈0|+ p1 |1〉〈1| lives on the green line in Fig. 1. It can be generated
by preparing |0〉 with probability p0 and preparing |1〉 with probability p1.

(3) The Pauli eigenstates are the black dots in Fig. 1. Their convex combinations
are just all the states living within the red octahedron in Fig. 1.
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|0〉

|1〉

1√
2
(|0〉+ |1〉)

1√
2
(|0〉 − i |1〉) 1√

2
(|0〉+ i |1〉)

1√
2
(|0〉 − |1〉)

z

y
x

H axis

Figure 1. Bloch Sphere.

(4) A Clifford operator will map a Pauli eigenstate into another Pauli eigen-
state. Since Clifford operations forms a group, a sequence of Clifford opera-
tion can be view as one single Clifford operation as a whole. Since we forget
part of the sequence, the overall Clifford operation can be one of the many
possible Clifford operations, which will map |0〉 into one of the 6 possible
Pauli eigenstate with a certain probability distribution. Hence, our resul-
tant state is a some convex combination of the Pauli eigenstates, which as
discussed in (b) is a state living within the red octahedron in Fig. 1.

If we exactly remember the circuit, we know exactly what is the overall
Clifford operation, which enable us to know exactly what is the output Pauli
eigenstate. Hence, the output state is one of the Pauli eigenstates, which are
the vertices of the octahedron.

If we completely forgot the circuit and the circuit is long enough, essentially
the overall circuit can be any Clifford operation with uniform probability.
Hence, the resultant state is a uniform sum of of all possible Pauli eigen-
states, resulting in a maximally mixed states that lives at the centre of the
Bloch sphere.

(5) The trace distance between two density matrix is:

d(ρ1, ρ2) =
Tr |ρ1 − ρ2|

2
=

Tr |(~r1 −~r2) ·~σ|
4

Following similar arguments in question (1), the eigenvalues of (~s1 −~s2) ·~σ
are ±|~s1 −~s2|. Remember that Tr |(~s1 −~s2) ·~σ| is simply the sum of the
absolute value of these two eigenvalues:

d(ρ1, ρ2) =
|~s1 −~s2|

2
.

Hence, the trace distance between two single-qubit states is simply half of
the Euclidean distance between them on the Bloch sphere.


