
A14687W1

SECOND PUBLIC EXAMINATION
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Honour School of Mathematics and Computer Science Part C: Paper C7.4
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Honour School of Mathematical and Theoretical Physics Part C: Paper C7.4
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Master of Science in Mathematical Sciences: Paper C7.4
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Introduction to Quantum Information

TRINITY TERM 2023

Friday 02 June, 2:30pm to 4:15pm

You may submit answers to as many questions as you wish but only the best two will count for
the total mark. All questions are worth 25 marks.

You should ensure that you observe the following points:

� start a new answer booklet for each question which you attempt.

� indicate on the front page of the answer booklet which question you have attempted in that
booklet.

� cross out all rough working and any working you do not want to be marked. If you have used
separate answer booklets for rough work please cross through the front of each such booklet
and attach these answer booklets at the back of your work.

� hand in your answers in numerical order.

If you do not attempt any questions, you should still hand in an answer booklet with the front
sheet completed.

Do not turn this page until you are told that you may do so
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Throughout the entire exam, we refer to the Pauli matrices as X ≡ σx, Y ≡ σy and Z ≡ σz, where

X =

[
0 1
1 0

]
, Y =

[
0 −i
i 0

]
, Z =

[
1 0
0 −1

]
.

They anticommute and square to the identity, X2 = Y 2 = Z2 = 1.

1. (a) [4 marks] What are the matrix representations of the Hadamard and the controlled-NOT
gates in the computational basis? Explain why the Hadamard gates are often used as the
first operation in quantum algorithms.

Quantum computation may be viewed as an interference experiment involving many qubits, with
phase shifts induced by evaluations of Boolean functions f : {0, 1}n → {0, 1}. These evaluations
are usually implemented as unitary evolutions of two registers,

|x〉 |y〉 → |x〉 |y ⊕ f(x)〉 ,

where x ∈ {0, 1}n and y ∈ {0, 1}.
(b) [3 marks] What is the effect of the quantum function evaluation on the first register if,

instead of |y〉, the second register is prepared in the state |−〉 = 1√
2
(|0〉 − |1〉)?

Let fab be a Boolean function, fab : {0, 1}2 → {0, 1}, which takes the value 0 for all its arguments
except one binary string ab ∈ {0, 1}2, for which it takes the value 1. There are four such functions
and one of them is presented to you as an oracle. Your task is to identify the function (to find the
binary string ab) with the minimal number of calls to the oracle.

(c) [2 marks] In the classical scenario, how many calls to the oracle are required in order to
identify the function?

A quantum algorithm solving this problem with only one call to the oracle is implemented by the
following circuit,

|0〉 H

U

|0〉 H

|−〉 fab

Let |fab〉 be the state of the first register (the two top qubits) prior to the unitary operation U .

(d) [4 marks] Write down the four possible states |fab〉 and explain why they are perfectly
distinguishable.

(e) [2 marks] The final unitary operation U maps the four states |fab〉 to the computational
basis states. Write down the matrix representation of U in the computational basis.

(f) [6 marks] Draw a circuit diagram implementing U . It contains two Hadamard gates and
one control-NOT gate, and it ends with two NOT gates (one on each qubit).

(g) [4 marks] Suppose gab is a Boolean function g : {0, 1}2 → {0, 1} which takes the value 1
for all its arguments except one binary string ab, for which it takes the value 0. Given
an oracle evaluating one of the four functions gab how would you identify which one it is
with only one call to the oracle?
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2. A quantum channel acting on the density operator ρ can always be written in the Kraus form,

ρ 7→ ρ′ =
n∑

i=1

KiρK
†
i ,

where K1, . . . ,Kn are the Kraus operators, which satisfy
∑n

i=1K
†
iKi = 1.

(a) [4 marks] Show that any quantum channel preserves positivity and trace. Show that a
composition of two quantum channels with Kraus operators Ai and Bj is another quantum
channel with the Kraus operators BjAi.

(b) [4 marks] Is any map which preserves positivity and trace a quantum channel?

(c) [4 marks] Given an orthonormal basis {|ei〉} show that the projectors on the basis states,
Pi = |ei〉〈ei|, form a set of Kraus operators. Describe the action of the associated quantum
channel,

ρ 7→ ρ′ =
n∑

i=1

PiρP
†
i ,

on any density matrix ρ written in the {|ei〉} basis. What are the diagonal and off-diagonal
elements of the resulting density matrix ρ′?

Each term in the Kraus decomposition may be interpreted as the result of a measurement. Such
a generalised measurement performed on a quantum system in state ρ gives outcome m with

probability pm = Tr
(
KmρK

†
m

)
and leaves the system in the post-measurement state,

ρ→ 1

pm
KmρK

†
m.

(d) [4 marks] Suppose you performed a generalised measurement, defined by a set of Kraus
operators Ki, on a quantum system in state ρ. Your measuring apparatus registered
the outcome but you did not look at it, and soon after the record of the outcome was
irretrievably lost. From your perspective, what is the post-measurement state of the
system?

Alice prepares a qubit in one of the three quantum signal states,

|ψ0〉 = |0〉 ,

|ψ1〉 = −1

2
|0〉+

√
3

2
|1〉 ,

|ψ2〉 = −1

2
|0〉 −

√
3

2
|1〉 ,

and sends it to Bob. Each state is chosen uniformly at random. Bob’s task is to perform a
measurement which allows him to maximise the probability of guessing correctly the signal state.

(e) [5 marks] It is known that in this case the optimal measurement is defined by the three

operators Ki =
√

2
3 |ψi〉〈ψi|, where i = 0, 1, 2. Are they projectors? Are they Kraus

operators? What is the probability of successful identification of the incoming signal
state using this measurement?

(f) [4 marks] Bob couldn’t perform the optimal measurement and instead decided to measure
the qubit in the computational basis. What is the probability of obtaining the results 0
and 1 respectively? What can Bob infer about the signal states if the outcome is 1?
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3. We say that operator S stabilises |ψ〉 if S |ψ〉 = |ψ〉.
(a) [5 marks] Consider the following two Bell states and show that

|Ω〉 =
1√
2

(|00〉+ |11〉) is stabilised by 〈Z ⊗ Z, X ⊗X〉,∣∣Ω̄〉 =
1√
2

(|00〉 − |11〉) is stabilised by 〈Z ⊗ Z, −X ⊗X〉,

where 〈Z⊗Z, ±X ⊗X〉 stands for the stabiliser group generated by Z⊗Z and ±X ⊗X.
Which two-qubit state is stabilised by 〈−Z⊗Z, X⊗X〉, and which by 〈−Z⊗Z, −X⊗X〉?

The circuit below shows one way to measure the stabiliser Z⊗Z without destroying post-measurement
states. The binary outcomes a = 0 and a = 1 correspond to Pauli eigenvalues +1 and −1, respec-
tively.

a|0〉 H H

|ψ〉
Z

Z

(b) [6 marks] Step through the execution of this circuit, writing down the quantum states
of the three qubits after each computational step, and show that it projects the input
state |ψ〉 onto one of the two orthogonal subspaces associated with the two orthogonal
projectors 1

2(1⊗ 1± Z ⊗ Z). Express these two projectors in terms of the projectors on
the computational basis states, i.e. in terms of |00〉〈00|, |01〉〈01|, |10〉〈10| and |11〉〈11|.

Observables Z ⊗ Z and X ⊗ X, are measured on two qubits prepared in some, possibly mixed,
input state ρ, as shown in the circuit diagram below

a

b

|0〉 H H

|0〉 H H

ρ
Z X

Z X

(c) [4 marks] What are the possible outcomes ab and what are the post-measurement states
of the two qubits corresponding to these outcomes? Does it matter which observable is
measured first?

(d) [4 marks] Let the input state be described by the density matrix

ρ =
1

2
|00〉〈00|+ 1

2
|11〉〈11| . (1)

Show that this density matrix may also correspond to the scenario where the input state
is randomly chosen with equal probability to be either |Ω〉 or

∣∣Ω̄〉.
(e) [6 marks] You are provided with a source that was designed to repeatedly generate pairs

of qubits in state |Ω〉 but you are told that, due to decoherence, the source may, with
some probability p, generate state ρ (as in Eq. (1)). How would you use the circuit above
to estimate the fraction p of the decohered states?
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