
For C7.4 Introduction to
Quantum Information

updated February 28, 2024

QUANTUM ERROR CORRECTION

ZHENYU CAI

1. Preliminary

1.1. General Idea. In quantum error correction (QEC), we have n physical qubits
which lead to a Hilbert space of dimension 2n. Within this full Hilbert space H,
we will define a subspace of dimension 2k (with k ≤ n) as our code space C, which
can be used to encode k logical qubits. By storing our quantum information in these
logical qubits and thus in the code space C, whenever an error takes our quantum
state outside of the code space C, we can detect such an error and attempt to correct
it by projecting the erroneous state back into the code space C.

1.2. Example: Bit-flip Repetition Code. Given n = 3 physical qubits, we define our
code space C to be the subspace spanned by {|000⟩ , |111⟩}, which encodes k = 1
logical qubits with the following mapping:∣∣0〉 7→ |000⟩∣∣1〉 7→ |111⟩
where we use top-bar to denote the logical information encoded.

For an arbitrary state
∣∣ψ〉 within the code space C:∣∣ψ〉 = α |000⟩+ β |111⟩ ,

if a bit-flip error (X error) occurs to the first qubit, we then have the erroneous state:

|ψϵ⟩ = X1
∣∣ψ〉 = α |100⟩+ β |011⟩ ,

which is now outside the code space C. We can then detect such an error by checking
whether our state is still within the code space C.

In fact for the bit-flip repetition code, if a single-qubit bit flip happens on any of the
qubits, the process of checking whether our state is still within the code space C will
also tell us about which qubit is flipped, thus enable us to correct any single-qubit
bit-flip (assuming no two-qubit bit flips).

2. Stabiliser Formalism

2.1. Code Space. We will use G to denote the Pauli group for n qubits:

G = {±1,±i} × {1, X, Y, Z}⊗n.

The code space C is defined by a subgroup of the Pauli group S ⊂ G called the
stabiliser group, such that for any states |ψ⟩ within the code space C, it is invariant
under the action of any elements S in the stabiliser group S:

C = {|ψ⟩ ∈ H | S |ψ⟩ = |ψ⟩ ∀S ∈ S}. (1)

Note that to have a non-trivial (non-zero dimension) code space, S must not contain
−1 (in fact, this is the only requirement for a Pauli subgroup to be a valid stabiliser
group). This also implies that S is Abelian. Why must the stabiliser group S satisfy

these properties?
The generators of the stabiliser group (stabiliser generators or stabiliser checks) will be
denoted as S̃. It is easy to see that if a state |ψ⟩ satisfy S̃ |ψ⟩ = |ψ⟩ for all S̃ ∈ S̃,

1

QUANTUM ERROR CORRECTION 2

then |ψ⟩ also satisfy S |ψ⟩ = |ψ⟩ for all S ∈ S. Hence, we can rewrite our definition
of the code space in terms of the stabiliser checks instead:

C = {|ψ⟩ ∈ H | S̃ |ψ⟩ = |ψ⟩ ∀S̃ ∈ S̃}. (2)

Since the stabiliser group S is Abelian and it contains only Pauli operators which
square to 1, we have: The absolute sign | | is used to denote the

size of a set.

|S| = 2|S̃|. (3)

Hence, the set of stabiliser checks is exponentially smaller than the full set of stabilis- Why is Eq. (3) true? Hint: since the
stabiliser group S is Abelian, to construct a
given stabiliser, the order of composition of
the stabiliser checks is not important, we
only need to care about which stabiliser
checks are used.

ers, checking only the generators is so much easier!

Each stabiliser check can be viewed as an independent constraint on the code space
that freezes out one qubit degree of freedom. Hence, the number of logical qubits
k encoded in the code space, which is related to the degrees of freedom left after
applying the stabiliser generator constraints, is given by:

k = n − |S̃| . (4)

where n is the total number of physical qubits.

2.2. Performing Stabiliser Checks. Following the definition of the code space C in
Eq. (2), given an arbitrary state |ψ⟩ ∈ H, to check whether it lies within the code
space C, we only need to perform measurements of all the stabiliser checks S̃ ∈ S̃

on the state and it lies in the code space iff all the measurements returns +1. The
circuit for performing the stabiliser check S̃ is given by:

Z

|ψ⟩ S̃

|0⟩ H H
Note that in the usual convention, the
stabiliser measurement result is often
denoted using the corresponding eigenstate
|mi⟩ instead: si = +1 ⇒ mi = 0,
si = −1 ⇒ mi = 1 (i.e. si = (−1)mi), and we
call m⃗ the error syndrome instead of s⃗. In
this note, for simplicity we stick with using
s⃗ instead of m⃗ as our error syndrome, this
distinction does not change any of the
arguments we are going to make.

The measurement of the ith stabiliser check S̃i ∈ S̃ will return a measurement result
of si = ±1. The set of stabiliser check measurement results s⃗ = {si} is called the
error syndrome, which would inform us about the errors that occurred and thus
enable us to correct them. For the syndrome in which all entries are +1: s⃗ = 1⃗, it
simply means the state is in the code space since it passes all the stabiliser checks.

Does the syndrome s⃗ = 1⃗ means that no
errors have happened?

2.3. Error Syndrome. Recall that two Pauli operators G1, G2 will either commute
or anti-commute. We can define their commutator η(G1, G2) as:

G1G2 = η(G1, G2)G2G1

for which

η(G1, G2) =

{
+1 G1 and G2 commute
−1 G1 and G2 anti-commute.

(5)

When a Pauli error E occurs on a state within the code space
∣∣ψ〉 ∈ C, measuring S̃i

on this erroneous state E
∣∣ψ〉 would return:

S̃iE
∣∣ψ〉 = η(S̃i, E)ES̃i

∣∣ψ〉 = η(S̃i, E)E
∣∣ψ〉

i.e. the stabiliser measurement of S̃i on the erroneous state E
∣∣ψ〉 would return the

measurement result of si(E) = η(S̃i, E), which means the full error syndrome for
the Pauli error E is:

s⃗(E) = {η(S̃i, E) ∀S̃i ∈ S̃}. (6)

QUANTUM ERROR CORRECTION 3

2.4. Applying Correction. The process of translating a given error syndrome s⃗ into
the recovery operation (correction) is called decoding. In the simplest decoding The weight of a Pauli operator G is the

number of qubits that it acts non-trivially
on, denoted as wt(G). E.g. wt(Z1Z2) = 2 ,
wt(X2X5X8X9) = 4.

scheme called minimum-weight decoding, we look at all errors that can give rise to
the same error syndrome and pick the one with the lowest weight as our guess for
the error that occurred. This is because assuming local error events, the probability
of a given error occurring will decay exponentially with its weight. Hence, the error If we assume each single-qubit error occurs

with probability p, then a weight-w error
will occur with the probability O(pw).

with the lowest weight will have the highest probability of occurring for the given
syndrome. If we guess the error to be some Pauli operator E, then the correction
we need to apply is simply an additional E gate since E2 = 1 for Pauli operators. Is minimum-weight decoding the optimal

decoding scheme? This can be better
answered after you learn about logical gates
later.2.5. Example Revisited: Bit-Flip Repetition Code. In the stabiliser formalism, the

code space spanned by {|000⟩ , |111⟩} is defined by the set of stabilisers
We often use subscripts to denote which
qubits the Pauli operator acts on. For
example, when there are 3 qubits, we have
Z1Z2 ≡ Z ⊗ Z ⊗ 1 and Z1Z3 ≡ Z ⊗ 1 ⊗ Z.

S = {1, Z1Z2, Z2Z3, Z1Z3},

which can be generated from the set of stabiliser checks

S̃ = {Z1Z2, Z2Z3}.

Following Eq. (4), the number of logical qubits encoded is k = n − |S̃| = 3 − 2 = 1
as expected.

The Z1Z2 stabiliser check on the state |ψ⟩ can be performed using:

Z

|ψ⟩ Z1Z2

|0⟩ H H

≡

Z

|ψ⟩

|0⟩ H H

And similarly for the stabiliser check for Z2Z3.

As discussed before, the error syndrome for a given error can be obtained through
its commutation relationship with the stabiliser checks {Z1Z2, Z2Z3} using Eqs. (5)
and (6). Hence, the error syndrome for a bit-flip error in the first qubit (X1) is:

s⃗(X1) = {η(Z1Z2, X1), η(Z2Z3, X1)} = {−1,+1}.

Following the same arguments, we can obtain the error syndrome for all the bit-flip
errors:

Syndrome Possible Errors Correction

{+1,+1} 1 or X1X2X3 1

{+1,−1} X3 or X1X2 X3

{−1,+1} X1 or X2X3 X1

{−1,−1} X2 or X1X3 X2

We notice that multiple errors can give rise to the same syndrome. As mentioned in
Section 2.4, we will choose the lowest-weight error as the correction since they are
more likely to occur. In such a way, when any weight-2 bit flip happens, a wrong
correction can be applied, causing our code to fail. If the probability of a single-
qubit bit flip is p, then the probability of a weight-2 bit flip happening, leading to
the failure of our code is O

(
p2). This is a quadratic reduction compared to the

bit-flip error probability of a single unprotected qubit (which is simply p).

QUANTUM ERROR CORRECTION 4

3. Beyond Bit-flip Errors

3.1. Syndrome Subspace. The projector of the ±1 eigenspace of a Pauli operator G
is given as: For a ±1 eigenstates of G: |G±⟩, we can

easily verify that: Π± |G±⟩ = |G±⟩,
Π± |G∓⟩ = 0 as expected. We can also verify
that Π± are idempotent (since they are
projectors).

Π± =
1 ± G

2
.

Hence, when measuring the ith stabiliser check S̃i, if the result is si, the incoming

state is projected into the subspace defined by Πsi = 1+si S̃i
2 . After measuring all

the stabiliser checks S̃i ∈ S̃ and obtain the error syndrome s⃗, the incoming state is
projected into the s⃗-syndrome subspace defined by the projector:

Πs⃗ =
|S̃|
∏
i=1

1 + siS̃i
2

.

More explicitly, let us again look at the simple example of bit-flip repetition code, for
which the full Hilbert space can be divided into four different syndrome subspaces:

Error Syndrome Projector Subspace

{+1,+1} 1+Z1Z2
2

1+Z2Z3
2 span{|000⟩ , |111⟩}

{+1,−1} 1+Z1Z2
2

1−Z2Z3
2 span{|001⟩ , |110⟩}

{−1,+1} 1−Z1Z2
2

1+Z2Z3
2 span{|100⟩ , |011⟩}

{−1,−1} 1−Z1Z2
2

1−Z2Z3
2 span{|010⟩ , |101⟩}

Equipped with the idea of syndrome subspaces, now let us see how can we deal
with errors beyond simple bit flips.

3.2. Linear Combination of Errors. So far we have only considered the case in
which discrete X errors have occurred. However, in a quantum system, we can also
have a superposition of errors. Let us suppose an error of the form α01 + α1X1 +
α2X2 + α3X3 has occurred on the code state |000⟩ in the bit-flip repetition code,
results in a noisy state

(α01 + α1X1 + α2X2 + α3X3) |000⟩ = α0 |000⟩+ α1 |100⟩+ α2 |010⟩+ α3 |001⟩

By performing stabiliser checks to measure the error syndrome on the incoming
noisy state, we have collapsed the incoming noisy state into one of the syndrome
subspaces listed above. The resulting output states and the corresponding proba-
bilities are given by:

Error Syndrome Output State Probability Correction needed

{+1,+1} |000⟩ |α0|2 1

{+1,−1} |001⟩ |α3|2 X3

{−1,+1} |100⟩ |α1|2 X1

{−1,−1} |010⟩ |α2|2 X2

Hence, the act of trying to detect the X errors using stabiliser checks has collapsed
the incoming errors into one of the X errors that we can correct. More generally if
the incoming error is a linear sum of correctable errors, then the act of syndrome
measurement will collapse the incoming error into one of the correctable error com-
ponents, i.e. if a QEC code can correct a given set of errors, then it can also correct any
linear combinations of these errors.

QUANTUM ERROR CORRECTION 5

Up till now we are still focusing on bit-flip (X) errors. If we have a code that
can correct both single-qubit X errors and single-qubit Z errors, then it can also
correct single-qubit Y errors which is equivalent to both X and Z errors happening
(Y = iXZ). Following our arguments above, this code is then able to correct any
linear combination of single-qubit Pauli errors. Since the Pauli operators form a
complete basis for single-qubit operators, we can correct any single-qubit errors
using this code. This can be extended to the multi-qubit case. Hence, it is sufficient
to only focus on the correction of X and Z errors up to a certain weight, which implies
the ability to correct any errors up to that weight. Now let us look at an explicit
example of a code that can correct both X and Z errors, Shor’s 9-qubit code.

3.3. Shor’s 9-qubit Code. We have shown that by encoding our logical information
with the stabiliser checks {Z1Z2, Z2Z3} in the following way:

|0̃⟩ 7→ |000⟩ |1̃⟩ 7→ |111⟩ , (7)

we can correct any single-qubit X (bit-flip) errors.

A simple switch between the X and Z basis, we can devise a code that can correct
any single-qubit Z (phase-flip) errors instead:

|+⟩ 7→ |+++⟩ |−⟩ 7→ |− −−⟩ (8)

with the stabiliser checks {X1X2, X2X3}

To construct a code that can correct both X and Z errors, we can further encode the
|+⟩ and |−⟩ in the phase-flip code in Eq. (8) using the bit-flip code in Eq. (7):

|+̃⟩
Eq. (8)−−−→

∣∣+̃+̃+̃
〉
=

1
2
√

2

(
|0̃⟩+ |1̃⟩

)⊗3 Eq. (7)−−−→ 1
2
√

2
(|000⟩+ |111⟩)⊗3

|−̃⟩
Eq. (8)−−−→

∣∣−̃−̃−̃
〉
=

1
2
√

2

(
|0̃⟩ − |1̃⟩

)⊗3 Eq. (7)−−−→ 1
2
√

2
(|000⟩ − |111⟩)⊗3

(9)

This is called Shor’s 9-qubit code and has the set of stabiliser checks:

{Z1Z2, Z2Z3, Z4Z5, Z5Z6, Z7Z8, Z8Z9, X1X2X3X4X5X6, X4X5X6X7X8X9}.

One can verify that for different single-qubit X and Z errors, measuring the sta-
biliser checks above will obtain different non-trivial (i.e. not all +1) error syndrome,
which can then be used to uniquely identify these single-qubit errors and make the
appropriate correction. In fact, Shor’s code can correct certain errors beyond single- There is also another version of Shor’s code

with a phase-flip code underneath a bit-flip
code instead, which is more robust against
Z (phase-flip) errors.

qubit errors (e.g. X1X4). Note that since there are more Z-checks (which can detect
X errors) than X-checks (which can detect Z errors), this code is more robust against
X (bit-flip) errors.

3.4. Tanner Graph and CSS Codes. A natural question is how one would construct
a quantum error correction code beyond those we have discussed. Possible insights
can be gained from looking at a graphical representation of the QEC code called
the Tanner graph. The Tanner graph is a bipartite graph with the two disjoint sub-
sets of vertices representing the data qubits and the checks (stabiliser generators),
respectively. A check vertex is connected to a data vertex if and only if the given

1 2 3

𝑍!𝑍" 𝑍"𝑍#
Checks:

Data qubits:

Example Tanner graph for a repetition code.
Tanner graph plays a critical role in classical
error correction. The quantum version is a
generalisation of that with multiple types of
edges as we will see later.

check acts non-trivially (i.e. a non-identity action) on the given data qubit.

A particularly important class of QEC codes that can be studied using the Tanner
graph is the Calderbank-Shor-Steane (CSS) codes. These are codes that have only
two types of stabiliser checks: checks that are purely tensor products of X and
checks that are purely tensor products of Z. Correspondingly, the Tanner graphs A CSS code is often constructed from two

classical codes, one for the X checks and the
other for the Z checks.for CSS codes also have two types of check vertices, emitting edges corresponding

to X parity checks and Z parity checks, respectively. An example Tanner graph for
the nine-qubit Shor code is shown in Fig. 1.

Not every arbitrary Tanner graph we draw will correspond to a valid QEC code.
All the stabiliser checks must commute with each other as mentioned before. In the

QUANTUM ERROR CORRECTION 6

1 2 3 4 5 6 7 8 9

𝑍!𝑍" 𝑍"𝑍# 𝑍$𝑍% 𝑍%𝑍& 𝑍'𝑍(𝑍(𝑍)

𝑋!𝑋"𝑋#𝑋$ 𝑋%𝑋& 𝑋$ 𝑋%𝑋& 𝑋'𝑋(𝑋)

: checks

: data qubits

: 𝑍-type checks

: 𝑋-type checks

Figure 1. The Tanner graph for the nine-qubit Shor code

case of CSS codes, this means all the X checks must commute with all the Z checks.
Translating into the language of the Tanner graph, this means for any pair of X and Note that all stabiliser checks commute is

not a sufficient condition for a valid QEC
code, e.g. think of the set of checks
{X1X2, Y1Y2, Z1Z2}. However, for the case of
CSS code, this is sufficient (as long as no
phase factors in the checks).

Z checks, they must intersect at an even number of data qubits. In this way, our Tanner
graph will represent a valid QEC code.

4. Logical Gates

4.1. Logical Pauli Gates. Besides protecting the logical information contained in a
logical qubit, we would also want to perform logical gates on it in order to carry
out computations. But how do we identify the physical operations that correspond
to the target logical gates?

Recall that by definition, the set of stabilisers will act trivially on all code state
∣∣ψ〉:

S
∣∣ψ〉 = ∣∣ψ〉 ∀S ∈ S,

∣∣ψ〉 ∈ C.

This simply implies that the stabilisers are the logical identity:

S ≡ I.

All the Pauli logical operations should commute with the logical identity. Hence,
the set of logical Pauli gate G is simply the set of Pauli operators that commute
with the stabiliser group:

G = {G ∈ G | SG = GS}.

In another word, G is the normaliser of the stabiliser subgroup S in the Pauli group Look up the difference between centraliser
and normaliser, are they the same in the
context of the Pauli group?G. Since S ≡ I, the logical action of a given logical operator G ∈ G is equivalent

to all elements in GS = {GS1, GS2, · · · }. E.g. all elements in XS will perform the
same logical action as X. In group theoretic language, S is a normal

subgroup of G. The set of logical operators
G is partitioned by S into different cosets,
with operators in the same coset being
logical equivalent, while operators in
different cosets perform different logical
actions.

But how do we know what logical action each element in G correspond to? If we
have identified a specific set of the logical basis states and we know their explicit
forms (e.g. in bit-flip code, we know that

∣∣0〉 = |000⟩,
∣∣1〉 = |111⟩), we can just

apply gates in G on the basis states and see what logical action they perform.

If not, then within the set of logical Pauli gates G we will try to identify the set of
logical X and Z operators: {X1, Z1, X2, Z2, · · · } where the subscript i denotes action
on the ith logical qubits, such that they satisfy the right commutation relationship.
Once we have identified {X1, Z1, X2, Z2, · · · }, we can use them to generate all the The right commutation relationship means

logical X and Z acting on the same logical
qubit will anti-commute, and all other
pairings of logical X and Z commute.

other logical Pauli gates. Note that such a choice is not unique, and by choosing
the set of logical X and Z operators, we have also implicitly chosen the mapping
between the logical basis states and physical states. Nevertheless in practice, there
are usually some conventions to adhere to, e.g. for CSS codes, whenever possible,
we will choose all logical X to be tensor products of only physical X, and all logical
Z to be tensor products of only physical Z.

QUANTUM ERROR CORRECTION 7

4.2. Code Distance and Correctable Errors. Let us briefly look back at the process
of quantum error correction. Suppose an error E occur on the code state

∣∣ψ〉, which
will give rise to the error syndrome s⃗(E). Using minimum-weight decoding, we
will pick a recovery operator (correction) R that is the minimum weight operator
that gives rise to the same syndrome: s⃗(E) = s⃗(R). The resultant state RE

∣∣ψ〉 will
have the trivial syndrome and thus is recovered back into the code space, which
implies that RE must be a logical operator: RE ∈ G. This gives rise to two possible
outcomes:

• RE ∈ S, i.e. RE is a stabiliser. This implies RE
∣∣ψ〉 = ∣∣ψ〉, and thus successful

error correction. The fact that we do not require need RE = I
for successful error correction, we only
require RE ∈ S, is a unique property of
quantum codes. There are no equivalent
statements in classical error correction.
Quantum codes with such a property are
called degenerate quantum codes.

• RE ∈ G− S, i.e. RE is a logical operator beyond the stabilisers. This implies
RE

∣∣ψ〉 ̸= ∣∣ψ〉, the logical information has been altered. We say that a logical
error has happened to the state, which means that the error correction has
failed.

The distance of the code is the weight of the smallest Pauli logical errors, usually
denoted as d:

d = min
G∈G−S

wt(G)

A code that encodes n physical qubits into k logical qubits with distance d is called
an Jn, k, dK code.

A code with distance d can correct any errors up to weight ⌊(d − 1)/2⌋. To see why
this is the case, let us suppose the error E has weight wt(E) ≤ ⌊(d − 1)/2⌋. Using
minimum weight decoding, the weight of the recovery operator R is by definition
smaller than E, which implies wt(R) ≤ ⌊(d − 1)/2⌋. Hence, the weight of the
effective logical operation after recovery RE must satisfy

wt(RE) ≤ wt(R) + wt(E) ≤ d − 1 < d.

Since by definition the smallest possible weight of a logical error is d, we know that
RE cannot be a logical error, it can only be a stabiliser. Hence, we have successfully
recovered our quantum state given wt(E) ≤ ⌊(d − 1)/2⌋.

For CSS code, we can search for the logical X operators by looking at only tensor
products of physical X operators and pick the ones that commute with all the Z
checks (while not being a stabiliser). Similarly for the logical Z operators. Finding
the smallest weight operator among these logical X and Z operators will give us
the code distance.

4.3. Examples.

4.3.1. Bit-flip Repetition Code. Recalled that the stabiliser checks of the bit-flip rep-
etition code are S = {Z1Z2, Z2Z3}. It is a CSS code (that has no X checks), thus
we can search for the logical X operators by looking for the tensor product of X
that commutes with all the stabiliser checks, which is simply X = X1X2X3. We
have X |000⟩ = |111⟩ as expected. Similarly, the logical Z operator can be found by
looking at the tensor product of Z that commutes with the stabiliser checks (and
not part of the stabilisers), and the one with the smallest weight is Z = Z1. Note
that we can construct other logically equivalent operators by multiplying with the
stabilisers, e.g. Z2 = Z1 · Z1Z2 ≡ Z. The minimum-weight logical error is simply
Z ≡ Z1, which means that the code distance is d = 1. We have ⌊(d − 1)/2⌋ = 0
since it cannot correct any phase-flip (Z) errors.

QUANTUM ERROR CORRECTION 8

4.3.2. Shor’s 9-qubit Code. This is also a CSS code with the stabiliser checks {Z1Z2,
Z2Z3, Z4Z5, Z5Z6, Z7Z8, Z8Z9, X1X2X3X4X5X6, X4X5X6X7X8X9}. After searching
through all X and Z Pauli strings that commute with the stabiliser checks, we find
that the smallest weight logical X operator is X = X1X2X3 and the smallest weight
logical Z operator is Z = Z1Z4Z7. Hence, the code distance is d = 3 and it can
correct all errors up to weight ⌊(d − 1)/2⌋ = 1.

5. Conclusion

In this note, we have introduced some of the most fundamental concepts in quan-
tum error correction (QEC). There are still many interesting topics in QEC that
we have not explored, e.g. threshold theorem, fault tolerance, state-of-the-art QEC
codes like the surface code, codes beyond stabiliser codes like subsystem codes, etc.
QEC is still a very dynamic research field with many of the open problems being
keys to the practical realisation of quantum computers. Hopefully, this introductory
note can act as a helpful guide for you to venture into various interesting topics in
QEC!

	1. Preliminary
	1.1. General Idea
	1.2. Example: Bit-flip Repetition Code

	2. Stabiliser Formalism
	2.1. Code Space
	2.2. Performing Stabiliser Checks
	2.3. Error Syndrome
	2.4. Applying Correction
	2.5. Example Revisited: Bit-Flip Repetition Code

	3. Beyond Bit-flip Errors
	3.1. Syndrome Subspace
	3.2. Linear Combination of Errors
	3.3. Shor's 9-qubit Code
	3.4. Tanner Graph and CSS Codes

	4. Logical Gates
	4.1. Logical Pauli Gates
	4.2. Code Distance and Correctable Errors
	4.3. Examples

	5. Conclusion

