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PREREQUISITE MATERIAL

ARTUR EKERT

At a very instrumental level, quantum theory is a set of rules designed to answer
questions such as ‘given a specific preparation and a subsequent evolution com-
pute probabilities for the outcomes of such and such test’. How do we represent
preparations, evolutions and tests in mathematical terms, and how do we get prob-
abilities? A mathematical setting for the quantum formalism is a vector space with
an inner product. The result of any preparation is represented by some unit vector
|ψ〉 and any test is represented by some other unit vector | e〉. The inner product of
these two vectors, written as 〈 e |ψ 〉, gives the probability amplitude that an object
prepared in state |ψ〉 will pass a test for being found in state | e〉. Probabilities are
obtained by squaring absolute values of probability amplitudes, | 〈 e |ψ 〉 |2. After
the test, in which the object was found to be in state | e〉, the object forgets about
its previous state |ψ〉 and is indeed in state | e〉. This is the mysterious “quantum
collapse”, status of which we will touch upon in the lectures. Mathematically we | e〉 〈e | |ψ〉

write this as | e〉 〈 e |ψ 〉 and read it from right to left. As we shall see in a moment
| e〉 〈e | describes a projection on state | e〉. If we let the initial state |ψ〉 evolve then
right after the evolution U, which is represented by a unitary operator, the new state
is U |ψ〉 and the probability amplitude that it will be found in state | e〉 is given by
〈e |U |ψ〉. The notation I have just used, full of | ·〉 and 〈· |, follows the standard

projector︷ ︸︸ ︷
| e〉 〈e | ψ〉 = | e〉

amplitude︷ ︸︸ ︷
〈 e |ψ 〉

useful ambiguities of Dirac notationquantum notation that will likely be familiar to physicists, but may look odd to
mathematicians or computer scientists. Love it or hate it, and I suggest the former,
the 1939 Dirac bra-ket notation is so common that you simply have no choice but to
learn it, especially if you want to study anything related to quantum theory. What
follows is a basic introduction for the uninitiated.

1. Vector spaces

1.1. I assume you are familiar with Euclidean vectors, those arrow-like geometric
objects which are used to represent physical quantities such as velocities or forces.
You know that any two velocities can be added to yield a third, and the multiplica-
tion of a velocity vector by a real number is another velocity vector. Thus a linear
combination of vectors is another vector. Mathematicians simply took these proper-
ties and defined vectors as anything that can be added and multiplied by a number.
This is basically what an Italian mathematician Giuseppe Peano (1858 - 1932) did
in a chapter of his 1888 book with an impressive title, Calcolo geometrico secondo
l’Ausdehnungslehre di H. Grassmann preceduto dalle operazioni della logica deduttiva.

1.2. Vector spaces. Following Peano we define a vector space as a mathematical
structure in which the notion of linear combination make sense. More formally, a Linear combinations must obey certain

natural rules. Addition of vectors must be
commutative and associative, with an
identity (the zero vector, which will always
be written as 0 ) and an inverse for each | v〉
(written as − | v〉). Multiplication by
complex numbers must obey the two
distributive laws: (α + β) | v〉 = α | v〉+ β | v〉
and α(| v〉+ |w〉) = α | v〉+ α |w〉.

complex vector space is a set V such that, given any two vectors | a〉 and | b〉 (that is,
two elements of V) and any two complex numbers α and β, we can form the linear
combination α | a〉+ β | b〉 which is also a vector in V. A subspace of V is any subset
of V which is closed under vector addition and multiplication by complex num-
bers. Here I start using the Dirac bra-ket notation and write vectors in a somewhat
fancy way as | label〉, where the “label” is anything that serves to specify what the
vector is, for example, | ↑〉 and | ↓〉 may refer to an electron with spin up or down
along some prescribed direction and | 0〉 and | 1〉 may describe a quantum bit, a
qubit, holding either logical 0 or 1. These are often called ‘ket’ vectors or simply
‘kets’. We will deal with ‘bras’ in a moment. A basis in V is a collection of vectors
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| e1〉 , | e2〉 , . . . , | en〉 such that every vector | v〉 in V can be written in exactly one
way as a linear combination of the basis vectors; | v〉 = ∑i vi | ei〉. The number of
elements in a basis is called the dimension of V. The most common n-dimensional
complex vector space is the space of ordered n-tuples of complex numbers, usually
written as column vectors.

| a〉 =


a1
a2
...

an

 | b〉 =


b1
b2
...

bn

 α | a〉+ β | b〉 =


αa1 + βb1
αa2 + βb2

...
αan + βbn

 (1)

In fact this is the space we will use most of the time. Throughout the course we
will deal only with vector spaces of finite dimensions. This is sufficient for all our
purposes and we will avoid many mathematical subtleties associated with infinite
dimensional spaces.

1.3. Bras and kets. With any physical system we associate a complex vector space
with an inner product, known as a Hilbert space H. The inner product between
vectors | u〉 and | v〉 in H is written as The inner product is a function that assigns

to each pair of vectors | u〉 , | v〉 ∈ H a
complex number 〈 u | v 〉 and satisfies the
following conditions:

• 〈 u | v 〉 = 〈 v | u 〉? ,
• 〈 v | v 〉 ≥ 0 for all v,
• 〈 v | v 〉 = 0 if and only if v = 0.

The inner product must be linear in the
second argument but antilinear in the first
argument;
〈 c1u1 + c2u2 | v 〉 = c?1 〈 u1 | v 〉+ c?2 〈 u2 | v 〉
for any complex constants c1 and c2.

〈 u | v 〉
For example, for column vectors | u〉 and | v〉 in Cn,

| u〉 =


u1
u2
...

un

 | v〉 =


v1
v2
...

vn

 (2)

the inner product is defined as

〈 u | v 〉 = u?
1v1 + u?

2v2 + . . . + u?
nvn. (3)

Following Dirac we may split the inner product into two ingredients The term “Hilbert space” used to be
reserved for an infinite-dimensional inner
product space that is complete i.e. every
Cauchy sequence in the space converges to
an element in the space. Nowadays, as in
these notes, the term includes
finite-dimensional spaces, which
automatically satisfy the condition of
completeness.

〈 u | v 〉 −→ 〈u | | v〉 .

Here | v〉 is a ket vector and 〈u | is called a bra vector, or a bra, and can be repre-
sented by a row vector

〈u | = [u?
1 , u?

2 , . . . , u?
n] .

The inner product can now be viewed as the result of the matrix multiplication

〈 u | v 〉 = [u?
1 , u?

2 , . . . , u?
n] ·


v1
v2
...

vn

 = u?
1v1 + u?

2v2 + . . . + u?
nvn.

Bras are vectors, for you can add them and multiply by scalars (here complex num- All Hilbert spaces of the same dimension
are isomorphic, so the differences between
quantum systems cannot be really
understood without additional structure.
This structure is provided by a specific
algebra of operators acting on H.

bers), but they are vectors in the space H? which is dual to H. Elements of H? are
linear functionals, that is, linear maps from H to C. Linear functional 〈u | acting on
any vector | v〉 in H gives a complex number 〈 u | v 〉.

1.4. Although H and H? are not identical spaces – the former is inhabited by kets
and the latter by bras – they are closely related. There is a one-to-one map from one
to the other, | v〉 ↔ 〈v |, denoted by a dagger ”Is this a † which I see before me...”

〈v | = (| v〉)†, | v〉 = (〈v |)†. (4)
We usually omit the parentheses when it is obvious what the dagger operation ap-
plies to. The dagger operation, also known as Hermitian conjugation, is antilinear,

(c1 | v1〉+ c2 | v2〉)† = c?1 〈v1 |+ c?2 〈v2 | ,
(c1 〈v1 |+ c2 〈v2 |)† = c?1 | v1〉+ c?2 | v2〉 .
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When applied twice, the dagger operation is the identity map. In the matrix repre-
sentation, Recall that the conjugate transpose or the

Hermitian conjugate of an n×m matrix A is
an m× n matrix A† , obtained by
interchanging the rows and columns of A
and taking complex conjugates of each entry
in A, i.e. A†

ij = A?
ji . In mathematics texts it is

often denoted by ? rather than † .
| v〉 =


v1
v2
...

vn

 †←→ 〈v | = [v?1 , v?2 , . . . , v?n] .

1.5. The inner product brings geometry: the length or a norm of | v〉 is given by
||v|| =

√
〈 v | v 〉 and we call | u〉 and | v〉 orthogonal if 〈 u | v 〉 = 0. Any maximal set δij , known as the “Kronecker delta”, is a

symbol that is defined to be zero for i 6= j
and to be one for i = j.of pairwise orthogonal vectors of unit length

〈
ei | ej

〉
= δij forms an orthonormal

basis and any vector can be expressed as a linear combination of the basis vectors,

| v〉 = ∑
i

vi | ei〉 , where vi = 〈 ei | v 〉 .

Bras 〈ei | form the dual basis,

〈v | = ∑
i

v?i 〈ei | , where v?i = 〈 v | ei 〉 .

To make the notation a bit less cumbersome we will sometimes label the basis kets
as | i〉 rather than | ei〉 and write Do not confuse | 0〉 with the zero vector. We

will never write the zero vector as | 0〉, it will
be always written as 0 without any bra or
ket decorations, e.g. | v〉+ 0 = | v〉.| v〉 = ∑

i
| i〉 〈 i | v 〉 , 〈v | = ∑

j
〈 v | i 〉 〈i | .

With any isolated quantum system, which can be prepared in n perfectly distin-
guishable states, we can associate a Hilbert space H of dimension n such that each
vector | v〉 ∈ H of unit length, 〈 v | v 〉 = 1, represents a quantum state of the system.
The overall phase of the vector has no physical significance: | v〉 and eiϕ | v〉, for any
real ϕ, describe the same state. The inner product 〈 u | v 〉 is the probability ampli-
tude that a quantum system prepared in state | v〉 will be found in state | u〉. States
corresponding to orthogonal vectors, 〈 u | v 〉 = 0, are perfectly distinguishable for
the system prepared in state | v〉 will never be found in state | u〉, and vice versa.
In particular, states forming orthonormal bases are always perfectly distinguishable
from each other. Choosing such states, as we shall see in a moment, is equivalent
to choosing a particular quantum measurement.

2. Operators

A linear map between two vector spaces H and K is a function A : H → K
which respects linear combinations A(c1 | v1〉+ c2 | v2〉) = c1 A | v1〉+ c2 A | v2〉, for
any vectors | v1〉 , | v2〉 and any complex numbers c1, c2. We will focus mostly on
endomorphisms, that is, on maps of H into itself, and we will call them operators.
The symbol 1 is reserved for the identity operator that maps every element of H to
itself. The product AB of two operators A and B is the operator obtained by first
applying B to some ket | v〉 and then A to the ket which results from applying B:
A(B | v〉) = AB | u〉. The order does matter for in general AB 6= BA. In the ex-
ceptional case in which AB = BA one says that these two operators commute. The
inverse of A, written as A−1, is the operator which satisfies AA−1 = 1 = A−1 A. For
finite-dimensional spaces one only needs to check one of the two conditions, for any
of the two implies the other, whereas on an infinite-dimensional space both must
be checked. Finally, given a particular basis, operator A is uniquely determined by
its matrix elements defined as Aij = 〈i | A | j〉. The adjoint, or Hermitian conjugate,
of A, denoted by A†, is defined by the relation

| a〉† = 〈a | , 〈a |† = | a〉
(α | a〉+ β | b〉)† = α? 〈a |+ β? 〈b |
(| a〉 〈b |)† = | b〉 〈a |
(AB)† = B† A†

(αA + βB)† = α?A† + β?B†

(A†)† = A

〈i | A† | j〉 = 〈j | A | i〉? , for all | i〉 , | j〉 ∈ H. (5)
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An operator A is said to be

• normal if AA† = A† A,
• unitary if AA† = A† A = 1,
• Hermitian or self-adjoint if A† = A.

2.1. Outer products aka dyads. Apart from the inner product 〈 u | v 〉, which is a
complex number, we can also form the outer product | u〉 〈v | which is a linear map
(operator) onH or onH?, depending how you look at it. This is what physicists like
and what mathematicians hate about Dirac notation – a certain degree of healthy
ambiguity. The result of | u〉 〈v | acting on ket | x〉 is | u〉 〈 v | x 〉, that is vector | u〉
multiplied by the complex number 〈 v | x 〉. By the same token, the result of | u〉 〈v |
acting on bra 〈y | is 〈 y | u 〉 〈v |, that is functional 〈v | multiplied by the complex
number 〈 y | u 〉. The product of two maps, A = | a〉 〈b | followed by B = | c〉 〈d |, is
a linear map BA, which in Dirac notation can be written as BA = | c〉 〈 d | a 〉 〈b | =
〈 d | a 〉 | c〉 〈b |, that is, inner product (complex number) 〈 d | a 〉 times outer product
(liner map) | c〉 〈b |.

| e2〉

| e1〉

| f2〉

| f1〉

A = | f1〉 〈e1 |+ | f2〉 〈e2 |

Any operator on H can be expressed as a sum of outer products. Given an or-
thonormal basis {| ei〉}, any operator which maps the basis vectors | ei〉 into vectors
| fi〉 can be written as ∑i | fi〉 〈ei |, where the sum is over all the vectors in the or-
thonormal basis. If vectors {| fi〉} also form an orthonormal basis then the operator
simply “rotates” one orthonormal basis into another. These are unitary operators
which preserve the inner product. In particular, if each | ei〉 is mapped into | ei〉, we
obtain the identity operator

∑
i
| ei〉 〈ei | = 1.

This relation holds for any orthonormal basis and it is one of the most ubiquitous
and useful formulas in quantum theory. For example, for any vector | v〉 and for
any orthonormal basis {| ei〉} we have

| v〉 = 1 | v〉 = ∑
i

projector︷ ︸︸ ︷
| ei〉 〈ei | v〉 = ∑

i
| ei〉

amplitude vi︷ ︸︸ ︷
〈 ei | v 〉 = ∑

i
vi | ei〉 , (6)

where vi = 〈 ei | v 〉 are the components of | v〉. Finally, note that the adjoint of
| a〉 〈b | is | b〉 〈a |.

2.2. Trace. The trace is an operation which turns outer products into inner prod-
ucts,

| b〉 〈a | −→ 〈 a | b 〉 . (7)

We have just seen that any linear operator can be written as a sum of outer prod-
ucts, hence we can extend the definition of trace (by linearity) to any operator.
Alternatively, for any square matrix A the trace of A is defined to be the sum
of its diagonal elements, Tr A = ∑k 〈ek | A | ek〉 = ∑k Akk. You can show, using
this definition or otherwise, that the trace is cyclic, Tr (AB) = Tr (BA) and linear
Tr (αA + βB) = αTr A + βTr B, where A and B are square matrices and α and β
complex numbers. Moreover,

Tr (αA + βB) = αTr A + βTr B
Tr | a〉 〈b | = 〈 b | a 〉
Tr ABC = Tr CAB = Tr BCA

Tr | b〉 〈a | = ∑
k
〈 ek | b 〉 〈 a | ek 〉 = ∑

k
〈 a | ek 〉 〈 ek | b 〉 = 〈 a |1 〉 | b〉 = 〈 a | b 〉 . (8)

Here the second term can be viewed both as the sum of the diagonal elements of
| b〉 〈a | in the | ek〉 basis and as the sum of the products of two complex numbers
〈 ek | b 〉 and 〈 a | ek 〉. We have used the decomposition of the identity, ∑k | ek〉 〈ek | =
1. Given that we can decompose the identity by choosing any orthonormal basis it
is clear that the trace does not depend on the choice of the basis.



PREREQUISITE MATERIAL 5

2.3. Example. In this course we will often work with a 2-dimensional Hilbert space
with a chosen orthonormal basis denoted as | 0〉 , | 1〉, called the computational basis.
Given

| 0〉 =
[

1
0

]
| 1〉 =

[
0
1

]
| a〉 =

[
a0
a1

]
| b〉 =

[
b0
b1

]
(9)

we can write | a〉 = a0 | 0〉+ a1 | 1〉 and | b〉 = b0 | 0〉+ b1 | 1〉. We use the conjugate
transpose (the dagger operation) to obtain the corresponding bras,

〈0 | =
[
1 0

]
〈1 | =

[
0 1

]
〈a | =

[
a?0 a?1

]
〈b | =

[
b?0 b?1

]
(10)

and write the inner product of | a〉 and | b〉 explicitly as

〈 a | b 〉 =
[
a?0 a?1

] [b0
b1

]
= a?0b0 + a?1b1. (11)

The standard matrix multiplication also gives

| a〉 〈b | =
[

a0
a1

] [
b?0 b?1

]
=

[
a0b?0 a0b?1
a1b?0 a1b?1

]
. (12)

The trace of | a〉 〈b | is the sum of diagonal elements a0b?0 + a1b?1 , which is indeed
equal to 〈 a | b 〉. Outer products which involve only vectors from the computational
basis can be explicitly written as

| 0〉 〈0 | =
[

1 0
0 0

]
, | 0〉 〈1 | =

[
0 1
0 0

]
, | 1〉 〈0 | =

[
0 0
1 0

]
, | 1〉 〈1 | =

[
0 0
0 1

]
.

As you can see, any 2× 2 matrix can be expressed as a linear combination of the
four matrices above,[

A00 A01
A10 A11

]
= A00 | 0〉 〈0 |+ A01 | 0〉 〈1 |+ A10 | 1〉 〈0 |+ A11 | 1〉 〈1 | .

In general, outer products which involve only vectors from an orthonormal basis,
{| i〉}, are often used to express operators in that basis; operator A can be written as
A = ∑ij Aij | i〉 〈j |. In the matrix language | i〉 〈j | represents a matrix with all entries
equal to zero except entry (i, j) which is equal to one. In particular, | i〉 〈i | add up
to the identity operator ∑i | i〉 〈i | = 1, as we have already noticed.

2.4. Pauli matrices. When it comes to decomposing 2× 2 matrices we often use
the Pauli basis. Here are the three Pauli matrices σx ≡ X, σy ≡ Y, and σz ≡ Z,
supplemented by the identity matrix. The Pauli matrices square to the iden-

tity

X2 = Y2 = Z2 = 1.
They anticommute

XY + YX = 0,
XZ + ZX = 0,
YZ + ZY = 0,

and satisfy

XY = iZ
(and cyclic permutations)
Their trace is zero.
Their determinant is −1.

1 =

[
1 0
0 1

]
X =

[
0 1
1 0

]
Y =

[
0 −i
i 0

]
Z =

[
1 0
1 −1

]
The four matrices above are Hermitian and unitary, which is an unusual coinci-
dence, and square to the identity. As well as being useful gates in their own right,
the three Pauli matrices and the unit matrix form a basis for the four dimensional
algebra of two-dimensional matrices of complex numbers, that is, any 2× 2 com-
plex matrix is a unique linear combination of these four matrices with complex
coefficients. In general, the set of complex N × N matrices form a Hilbert space
with the inner product (A|B) = 1

N Tr A†B. This inner product is often called the
Hilbert-Schmidt product. The identity and the three Pauli matrices form an orthonor-
mal basis, with respect to the Hilbert-Schmidt product, in the space of complex
2× 2 matrices, that is, any 2× 2 matrix A can be written in this basis as, Physicists often write such decompositions

as a01+~a ·~σ, where vector~a has
components ax , ay , az and~σ = (σx , σy , σz).A =

[
a0 + az ax − iay
ax + iay a0 − az

]
= a01+~a ·~σ ≡ a01+ axσx + ayσy + azσz,

where the coefficients ak are given by the inner products ak = (σk|A) = 1
2 Tr σk A. Let

us notice in passing that if A is Hermitian then both a0 and the three components of
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~a are real numbers. Also note that any 2× 2 Hermitian matrix with zero trace can be
written as~a ·~σ, for some vector~a, hence all such matrices form a three dimensional
Euclidian space. Last but not least, here is one of the most useful relations involving
Pauli matrices,

(~a ·~σ)(~b ·~σ) = (~a ·~b) 1+ i(~a×~b) ·~σ. (13)

2.5. Quantum evolutions. Any physically admissible evolution of an isolated quan-
tum system is represented by a unitary operator. Please note that unitary operators
preserve the inner product. Given unitary operator U and | a′〉 = U | a〉, | b′〉 = U | b〉
we have 〈a′ | = 〈a |U† and〈

a′ | b′
〉
= 〈a |U†U | b〉 = 〈a |1 | b〉 = 〈 a | b 〉 . (14)

Preserving the inner product implies preserving the norm induced by this product,
that is, unit state vectors are mapped into unit state vectors, i.e. unitary operations
are the isometries of the Euclidean norm.

2.6. Schrödinger equation. Unitary operators describing evolutions of quantum
systems are usually derived from the Schrödinger equation, Here h̄ = 1.05× 10−34 J s denotes Planck’s

constant. Theorists will always choose to
work with a system of units where h̄ = 1.

d
dt
|ψ(t)〉 = − i

h̄
H |ψ(t)〉 , (15)

where H is a Hermitian operator called the Hamiltonian. It contains a complete
specification of all interactions both within the system and between the system and
the external potentials. For time independent Hamiltonians the formal solution of
the Schrödinger equation reads

|ψ(t)〉 = U(t) |ψ(0)〉 where U(t) = e−
i
h̄ H t (16)

Any unitary matrix can be represented as the exponential of some Hermitian ma-
trix, H and a real coefficient t, We shall ignore the convergence issues

eitH ≡ 1+ itH +
(it)2

2
H2 +

(it)3

2 · 3 H3... =
∞

∑
n=0

(it)n

n!
Hn. (17)

The state vector changes smoothly; for t = 0 the time evolution operator is merely
the unit operator 1, and when t is very small U(t) ≈ 1− itH is close to the unit
operator, differing from it by something of order t.

2.7. Quantum circuits. In this course we will hardly refer to the Schrödinger equa-
tion, instead we will assume that our clever colleagues, experimental physicists, are
able to implement certain unitary operations and we will use these unitaries, like
lego blocks, to construct other, more complex, unitaries. We refer to preselected ele-
mentary quantum operations as quantum logic gates and we often draw diagrams,
called quantum circuits, to illustrate how they act on qubits. For example, unitary
U acting on a single qubit is represented as

U

This diagram should be read from left to right. The horizontal line represents
a qubit that is inertly carried from one quantum operation to another. A circuit
composed of two gates, say U followed by V, is equivalent to a circuit composed of
one gate described by the matrix product VU (note the order in which we multiply
the matrices),

U V = VU
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Now, here comes the most important sequence of single qubit gates: the Hadamard
gate, followed by a phase shift gate, and followed by the Hadamard gate, H = 1√

2

[
1 1
1 −1

]
Hadamard gate

Pϕ =

[
1 0
0 eiϕ

]
phase gate

H
ϕ

H

This circuit represents a single qubit interference. You will see it over and over
again, for it is quantum interference that gives quantum computation additional
capabilities. The Hadamard gate H, in the Dirac notation, is written as

H =
1√
2
[| 0〉 〈0 |+ | 0〉 〈1 |+ | 1〉 〈0 | − | 1〉 〈1 |] , (18)

and the phase gate, Pϕ, as

Pϕ =
[
| 0〉 〈0 |+ eiϕ | 1〉 〈1 |

]
. (19)

The qubit is usually prepared in state | 0〉 or | 1〉 and we are interested in probabili-
ties of finding it in one of the basis states, | 0〉 or | 1〉, at the output.

| x〉 H H | y〉

The amplitude that input | x〉 will evolve into | y〉 is 〈y |HPϕH | x〉, where x, y = 0, 1.
This can be written as

〈y |HPϕH | x〉 = 〈y |H1Pϕ1H | x〉 = ∑
i,j
〈y |H | j〉 〈j | Pϕ | i〉 〈i |H | x〉 .

Please note how we use the Dirac notation here,

∑
i,j
〈y |H

projector︷ ︸︸ ︷
| j〉 〈j | Pϕ

projector︷ ︸︸ ︷
| i〉 〈i | H | x〉 ≡∑

i,j

matrix element Hyj︷ ︸︸ ︷
〈y |H | j〉

matrix element Pji︷ ︸︸ ︷
〈j | Pϕ | i〉

matrix element Hix︷ ︸︸ ︷
〈i |H | x〉

For example, for the standard input | 0〉, after inserting the required entries from H
and Pϕ, we obtain

〈0 |HPϕ H | 0〉 = cos
ϕ

2
, 〈1 |HPϕH | 0〉 | 0〉 = −i sin

ϕ

2
,

which means
| 0〉 → cos

ϕ

2
| 0〉 − i sin

ϕ

2
| 1〉 .

2.8. Projectors. A projector is any operator P such that P2 = P. It does not mat-
ter how many times you apply P, it will have the same result as applying it just
once. This makes sense from a geometric viewpoint, projecting the projection gives
you the same projection back again. Here we will deal only with Hermitian projec-
tion operators, P = P†, called orthogonal projectors but we shall call them simply
projectors.

For any normalised vector | e〉 (〈 e | e 〉 = 1) the outer product Pe = | e〉 〈e | is
an orthogonal projector for it is self-adjoint P†

e = Pe and satisfies PePe = Pe. The
latter can be seen very neatly when expressed in Dirac notation, | e〉 〈 e | e 〉 〈e | =
| e〉 〈e |. The projector | e〉 〈e | projects on the one-dimensional subspace spanned by
| e〉, which is self-evident in Dirac notation: (| e〉 〈e |) | v〉 = | e〉 〈 e | v 〉, where 〈 e | v 〉
is the component of | v〉 along | e〉. Thus, given the orthonormal basis {| ei〉}, the
expression

| e〉

| v〉

| e〉 〈 e | v 〉

| e1〉 〈e1 |+ | e2〉 〈e2 |+ ... | ek〉 〈ek |
is the projector onto the subspace spanned by {| e1〉 , | e2〉 , ..., | ek〉}. If we include all
the basis vectors we end up projecting onto the entire Hilbert space H. The projec-
tor, that projects onto the entire Hilbert space is, of course, the identity operator 1,
hence, let us write this yet again, ∑i | ei〉 〈ei | = 1.
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A complete measurement in quantum theory is determined by the choice
of an orthonormal basis {| ei〉} in H, and every such basis in principle
represents a possible measurement. Given a quantum system in state | v〉,
such that

| v〉 = ∑
i
| ei〉 〈 ei | v 〉

the measurement in the basis {| ei〉} gives outcome labelled by ek with prob-
ability | 〈 ek | v 〉 |2 and leaves the system in state | ek〉. This is consistent with
our interpretation of the inner product 〈 ek | v 〉 as the probability amplitude
that a quantum system prepared in state | v〉 will be found in state | ek〉.
State vectors forming orthonormal bases are perfectly distinguishable from
each other,

〈
ei | ej

〉
= δij, hence there is no ambiguity about the outcome.

2.9. Orthogonal subspaces. Vectors from any orthonormal basis satisfy the follow-
ing two conditions

〈 i | j 〉 = δij.

The orthonormality condition. The basis
consists of unit vectors which are pairwise
orthogonal (δij is the Kronecker delta).

∑
i
| i〉 〈i | = 1.

The completeness condition means that any
vector in H can be expressed as the sum of
orthogonal projections on | i〉.

The notion of orthogonality and completeness can be naturally extended to sub-
spaces of H. Subspaces E1 and E2 are orthogonal if 〈 v1 | v2 〉 = 0 for every | v1〉 ∈ E1
and | v2〉 ∈ E2. We say that E1, E2, . . . , En form the orthogonal decomposition of H,
written as,

H = E1 ⊕ E2 ⊕ . . .⊕ En, (20)

if the subspaces Ek are mutually orthogonal and any vector | v〉 ∈ H has a unique
representation

| v〉 = | v1〉+ | v2〉+ . . . + | vn〉 ,

where | vk〉 ∈ Ek. In geometric terms, vectors | vk〉 are the results of orthogonal pro-
jections of vector | v〉 on the orthogonal subspaces Ek: Pk | v〉 = | vk〉. The orthogonal
decomposition of H can also be written in terms of projectors, as the decomposition
of the identity into the sum of mutually orthogonal projectors:

1 = P1 + P2 + . . . + Pn, (21)

where projector Pk projects on subspace Ek. This is a generalisation of the com-
pleteness relation, ∑i | i〉 〈i | = 1, which used only projectors on one-dimensional
subspaces spanned by vectors from orthonormal bases. Here, we have a collection
of mutually orthogonal projectors PkPl = Pkδkl , which form the decomposition of
the identity ∑k Pk = 1.

PkPl = Pkδkl

Orthogonality condition for projectors.

∑
k

Pk = 1

Decomposition of the identity

They project on mutually orthogonal subspaces of H and any vector in H can be
uniquely expressed as the sum of this orthogonal projections | v〉 = ∑k Pk | v〉.

| v2〉

| v〉

| v1〉E1

E2
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So far we have identified measurements with orthonormal bases, or, if you
wish, with a set of orthonormal projectors on the basis vectors. This is
a complete measurement, which represents the best we can do in terms of
resolving state vectors in the basis states. In general, for any decomposition
of the identity ∑k Pk = 1 into orthogonal projectors Pk (PkPl = Pkδkl) there
exists a measurement that takes a quantum system in state |ψ〉, outputs
label k, with probability 〈ψ | Pk |ψ〉 and leaves the system in the state Pk |ψ〉
(multiplied by the normalisation factor i.e. divided by the length of Pk |ψ〉),

|ψ〉 −→ Pk |ψ〉√
〈ψ | Pk |ψ〉

.

2.10. Example. Consider a three dimensional Hilbert space and the following two
orthogonal projectors P = | 1〉 〈1 | + | 2〉 〈2 | and Q = | 3〉 〈3 | that form the de-
composition of the identity. Suppose that a physical system is prepared in state
| v〉 = c1 | 1〉 + c2 | 2〉 + c3 | 3〉. Ideally we would like to perform a complete mea-
surement that would resolve the state | v〉 into the three basis states but suppose
our experimental apparatus is not good enough and lumps together | 1〉 and | 2〉. It
can only differentiate between the two subspaces associated with projectors P and
Q. The apparatus, in this incomplete measurement, may find the system in the
subspace associated with P. This happens with the probability 〈v | P | v〉, which is
|c1|2 + |c2|2, and the state right after the measurement is the normalised P | v〉, that
is,

c1 | 1〉+ c2 | 2〉√
|c1|2 + |c2|2

.

The measurement may also find the system in the subspace associated with Q with
the probability 〈v |Q | v〉, which is |c3|2, resulting in the post-measurement state | 3〉.

2.11. Spectral decomposition. An operator A is said to be normal if AA† = A† A.
Both unitary and Hermitian operators are normal and all normal operators can be
diagonalised by unitary matrices U. More precisely, M is normal if and only if there
exists a unitary U such that

M = UDU†, (22)

where D is the diagonal matrix, D = diag(λ1, λ2, λ3...). The diagonal elements
λj are known as the eigenvalues or the spectrum of M and the column vectors of
U, which we can write as

∣∣mj
〉
= ∑i Uij | ei〉, are the corresponding eigenvectors

of M, i.e. M
∣∣mj

〉
= λj

∣∣mj
〉

and
〈

mi |mj
〉
= δij, ∑j

∣∣mj
〉 〈

mj
∣∣ = 1. Thus any

normal operator admits the spectral decomposition, M = ∑j λj
∣∣mj

〉 〈
mj
∣∣. Some

eigenvectors may share the same eigenvalue, which leads to a more general spectral
decomposition,

M = ∑
k

λkPk,

where Pk projects on the subspace spanned by vectors that share eigenvalue λk.
Eigenvalues of Hermitian operators are real whereas for all unitary operators

they are complex numbers of unit length: λj = eiαj for some real αj. You may visu-

| e1〉

| e2〉

λ 1

|m1〉

λ
2

|m2〉

alise it as follows: for each normal operator there exist a special basis (composed of
its eignevectors) such that the operator kind of squeezes or stretches the space along
each basis vector (or reflects, in the case of negative eigenvalues). This geometric
picture is accurate for Hermitian operators, which have real eigenvalues, but also
gives us some intuition for unitary operators, which preserve the length.
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2.12. Observables. In many textbooks you often read about a measurement of a
quantum observable. An observable A (a property that you can measure, such as
spin or energy), is represented by a Hermitian operator A on H. As he have just
seen, A can be written as

A = ∑
k

λkPk,

with real eigenvalues λk. The measurement of the observable A is then defined
by the projectors Pk (which satisfy ∑k Pk = 1, PkPl = Pkδkl) and the outcomes are
labelled by the eigenvalues λk.

3. Tensor products

Last but not least, we have tensor products. In quantum theory we use tensor
products to construct Hilbert spaces associated with composed systems. Let states
of system A be described by vectors in n dimensional Hilbert space HA and states
of system B by vectors in m dimensional Hilbert space HB. The combined system

A B

HA ⊗HBof A and B is then described by vectors in the nm dimensional tensor product
space HA ⊗HB. Given bases {| a1〉 , . . . , | an〉} in HA and {| b1〉 , . . . , | bm〉} in HB
we form the tensor product basis consisting of the ordered pairs | ai〉 ⊗

∣∣ bj
〉
, for

i = 1, . . . , n and j = 1, . . . , m. The tensor product space HA ⊗HB consists of all
linear combination of such tensor product basis vectors,

|ψ〉 = ∑
ij

cij | ai〉 ⊗
∣∣ bj
〉

.

We often drop the ⊗ symbol and simplify
the labelling of the tensor product vectors
from the computational basis. For example,
a state of a quantum register composed of
four qubits holding binary string 1001 may
be is written as
| 1〉 ⊗ | 0〉 ⊗ | 0〉 ⊗ | 1〉
or
| 1〉 | 0〉 | 0〉 | 1〉,
or simply as
| 1001〉.

For example, consider a two-qubit quantum register. The standard (computa-
tional) basis of the two qubits taken as a composed system is given by the four
product vectors | 0〉 ⊗ | 0〉 , | 0〉 ⊗ | 1〉 , | 1〉 ⊗ | 0〉 and | 1〉 ⊗ | 1〉. Here the order de-
termines the subsystem; we have the first qubit and the second qubit (from left
to right). We often drop the ⊗ symbol and write the standard product basis as
| 0〉 | 0〉 , | 0〉 | 1〉 , | 1〉 | 0〉 and | 1〉 | 1〉, or as | 00〉 , | 01〉 , | 10〉 and | 11〉. The most gen-
eral state of two qubits (assuming that the two qubits are isolated from anything
else) is described by a state vector

|ψ〉 = ∑
ij=0,1

cij | i〉 ⊗ | j〉 ≡ ∑
ij=0,1

cij | i〉 | j〉 ≡ ∑
ij=0,1

cij | ij〉 .

For example,

|ψ〉 = 1
2
| 00〉+ i

4
| 01〉+ i

√
7

4
| 10〉 − i

2
| 11〉 .

In fact, I will often write such expressions as the sum over all binary strings of size
2,

|ψ〉 = ∑
x∈{0,1}2

cx | x〉 .

which kind of hides the tensor product structure, but you know we are dealing with
two qubits for x ∈ {0, 1}2.

Given | a〉 = ∑i αi | ai〉 ∈ HA and | b〉 = ∑j β j
∣∣ bj
〉
∈ HB we can write | a〉 ⊗ | b〉 =

∑ij αiβ j | ai〉
∣∣ bj
〉
. In terms of column vectors, for example,

| a〉 ⊗ | b〉 =
[

α0
α1

]
⊗
[

β0
β1

]
=

 α0

[
β0
β1

]
α1

[
β0
β1

]
 =


α0β0
α0β1
α1β0
α1β1

 .

Note that each element of the first vector multiplies the entire second vector. This
is often the easiest way to get the tensor products in practice.

The tensor product operation ⊗ is distributive:

| a〉 ⊗ (β1 | b1〉+ β2 | b2〉) = β1 | a〉 ⊗ | b1〉+ β2 | a〉 ⊗ | b2〉 ,
(α1 | a1〉+ α2 | a2〉)⊗ | b〉 = α1 | a1〉 ⊗ | b〉+ α2 | a2〉 ⊗ | b〉 .
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The bra corresponding to the tensor product state | a〉 ⊗ | b〉 is written as

(| a〉 ⊗ | b〉)† = 〈a | ⊗ 〈b |

where the order of the factors on either side of ⊗ does not change when the dagger
operation is applied. When we write tensor products we usually identify which
vectors correspond to which subsystems by the order in which the respective tensor
factors appear. If subsystem A is in state | i〉 and subsystem B in state | j〉 we write
| i〉 ⊗ | j〉, or | i〉 | j〉 (omitting the ⊗), or even | ij〉.

The tensor product of Hilbert spaces is a Hilbert space. The inner products on
HA and HB give a natural inner product on HA ⊗HB. It is defined for any two
product vectors | a〉 ⊗ | b〉 and | a′〉 ⊗ | b′〉 as

(〈a | ⊗ 〈b |)
(∣∣ a′

〉
⊗
∣∣ b′
〉)

=
〈

a | a′
〉 〈

b | b′
〉

,

and then extended by linearity to any two vectors in HA ⊗HB. If the bases {| ai〉}
and {

∣∣ bj
〉
} are orthonormal then so is the tensor product basis {| ai〉 ⊗

∣∣ bj
〉
}.

3.1. Quantum registers. Quantum computers store binary strings in registers com-
posed of qubits. A register of size three can store individual binary strings such
as,

|0〉 ⊗ |1〉 ⊗ |1〉 ≡ |011〉, (23)
|1〉 ⊗ |1〉 ⊗ |1〉 ≡ |111〉, (24)

but it can also store the two of them simultaneously. For if we take the first qubit
and instead of setting it to |0〉 or |1〉 we prepare a superposition 1√

2
(|0〉+ |1〉) then

we obtain
1√
2
(|0〉+ |1〉)⊗ |1〉 ⊗ |1〉 ≡ 1√

2
(|011〉+ |111〉) . (25)

In fact we can prepare this register in a superposition of all eight binary strings it
can hold – it is enough to put each qubit into the superposition 1√

2
(|0〉+ |1〉) . This

gives
1√
2
(|0〉+ |1〉)⊗ 1√

2
(|0〉+ |1〉)⊗ 1√

2
(|0〉+ |1〉) , (26)

which can also be written as Here we have dropped the normalisation
constant 2−3/2. We will often do it for the
clarity of the exposition.∑

x∈{0,1}3

| x〉 = |000〉+ |001〉+ |010〉+ |011〉+ |100〉+ |101〉+ |110〉+ |111〉. (27)

This is how we label tensor products of
vectors from the computational basis:
| 0〉 ⊗ | 1〉 = | 01〉
| 01〉 ⊗ | 1〉 = | 011〉
| 011〉 ⊗ | 101〉 = | 011101〉
| 11110〉 ⊗ | 100〉 = | 11110100〉

In general quantum states of an n qubit register live in the n-fold tensor product
of the two dimensional spaces. This n-fold tensor power, written as ⊗nH = H⊗
. . . ⊗H, is a space of dimension 2n with basis | a1〉 ⊗ . . . ⊗ | an〉 (a1, . . . , an = 0, 1)
labelled by the 2n n-bit strings a1 . . . an. We often write | a1〉 ⊗ . . .⊗ | an〉 simply as
| a1 . . . an〉. When we bring together two registers, comprising of n and m qubits
respectively, we form a new n + m qubit register, (⊗nH)⊗ (⊗mH) = ⊗n+mH, with
the computational basis | a1 . . . an〉 ⊗ | b1 . . . bn〉 = | a1 . . . anb1 . . . bn〉.

3.2. Entanglement. Even though any vector |ψ〉 in HA ⊗HB can be written as a
linear combination of tensor product of basis vectors, only very few vectors in HA ⊗
HB can be written directly as tensor products, |ψ〉 = |ψA〉 ⊗ |ψB〉. They are called
product vectors. Most vectors in HA ⊗ HB do not admit such a decomposition.
States that cannot be represented by product vectors are called entangled. For
example, any state of two qubits can be written as a linear combination of vectors
from the computational basis | 00〉 , | 01〉 , | 10〉 and | 11〉; some of these states are
separable, e.g.

1√
2
(| 00〉+ | 01〉) = | 0〉 ⊗ 1√

2
(| 0〉+ | 1〉) ,
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and some of them are not, e.g. the most popular entangled states of two qubits,
known as the Bell states,

1√
2
(| 00〉 ± | 11〉) ,

1√
2
(| 01〉 ± | 10〉) ,

do not admit any tensor product decomposition. You can check that the Bell states
are normalised and pairwise orthogonal. They can be chosen as an orthonormal
basis in the four-dimensional tensor product space of two qubits.

3.3. Operators revisited. We will also need the concept of the tensor product of
two operators. If A is an operator on HA and B an operator on HB then the tensor
product operator A⊗ B is an operator on HA⊗HB defined by its action on product
vectors

(A⊗ B) (| a〉 ⊗ | b〉) = (A | a〉)⊗ (B | b〉).
Its action on all other vectors is determined by linearity,

A⊗ B

(
∑
ij

cij | ai〉 ⊗
∣∣ bj
〉)

= ∑
ij

cij A | ai〉 ⊗ B
∣∣ bj
〉

.

For example, two gates, A and B, acting in parallel on two different qubits,

B

A

are described by the tensor product U ⊗V.
The matrix elements of A⊗ B are given by

(A⊗ B)ik,jl = 〈ai | 〈bk | (A⊗ B)
∣∣ aj
〉
| bl〉 = 〈ai | A

∣∣ aj
〉
〈bk | B | bl〉

= AijBkl .

The composition of (A′ ⊗ B′) followed by (A⊗ B) is written as the product

(A⊗ B)(A′ ⊗ B′) = AA′ ⊗ BB′.

In particular, for outer products, we have

(| i〉 ⊗ | j〉)(〈k | ⊗ | l〉) ≡ | i〉 〈k | ⊗ | j〉 〈l | ≡ | ij〉 〈kl | .

In practice we just form block diagonal matrices, e.g.,

A⊗ B =

[
A00 A01
A10 A11

]
⊗
[

B00 B01
B10 B11

]
=

[
A00B A01B
A10B A11B

]
,

where each element of the first matrix multiplies the entire second matrix,

[
A00B A01B
A10B A11B

]
=


A00B00 A00B01 A01B00 A01B01
A00B10 A00B11 A01B10 A01B11
A10B00 A10B01 A11B00 A11B01
A10B10 A10B11 A11B10 A11B11

 .

The tensor product matrix has composite indices, (A⊗ B)ik,jl , here ik = 00, 01, 10, 11
labels rows and jl = 00, 01, 10, 11 labels columns and we always use the lexicograph-
ical order, 00, 01, 10, 11. For example, as you can see above, (A⊗ B)01,11 is the entry
in the second row and the fourth column and reads A01B11. For example, the circuit
composed of two Hadamard gates acting in parallel ,
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| 0〉 H | 0〉+| 1〉√
2

| 1〉 H | 0〉−| 1〉√
2

 = 1
2 (| 00〉 − | 01〉+ | 10〉 − | 11〉)

is described by the tensor product of the two Hadamard matrices, H ⊗ H,

H ⊗ H =
1√
2

[
H H
H −H

]
=

1
2


1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

 .

Can you see, by looking at this tensor product matrix, the result of (H ⊗ H) | 01〉?

3.4. Entangling gates. Most operators on HA ⊗HB cannot be written directly as
a tensor product of two operators on constituent subspaces. For example, take a
controlled-not gate

c-not =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 | y〉

| x〉 t
m | x⊕ y〉

| x〉
(28)

where x, y = 0 or 1 and ⊕ denotes XOR or addition modulo 2. We can write this as

| x〉 | y〉 7→ | x〉 | x⊕ y〉

The gate is described by the matrix that does not admit any tensor product decom-
position, but it can be written as the sum of tensor products

| 0〉 〈0 | ⊗ 1+ | 1〉 〈1 | ⊗ (| 0〉 〈1 |+ | 1〉 〈0 |).

You can easily check that a controlled-not can entangle two qubits in a separable
state, e.g.

1√
2
(| 0〉+ | 1〉)⊗ | 0〉 ≡ 1√

2
(| 00〉+ | 10〉) 7→ 1√

2
(| 00〉+ | 11〉).

3.5. Partial trace. If A⊗ B is a tensor product operator on HA ⊗HB, the the partial
trace over A or B is defined, respectively, as

Tr A A⊗ B = (Tr A)B, Tr B A⊗ B = A(Tr B). (29)

This definition is then extended to any operator on HA ⊗ HB by linearity. For
example, for any M on ⊗2H (tensor product space associated with two qubits) with
block form written in the standard basis {| 00〉 , | 01〉 , | 10〉 , | 11〉},

M =

[
P Q
R S

]
,

where P, Q, R, S are 2× 2 sized sub-matrices, we have

Tr A M = P + S, Tr B M =

[
Tr P Tr Q
Tr R Tr S

]
.

The same holds for general M on any HA ⊗ HB with corresponding block form
(m × m blocks of n × n sized sub-matrices, where m and n are the dimensions of
HA and HB respectively).
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3.6. Measuring subsystems. Consider a system AB consisting of two parts A and
B, and suppose AB as a whole is in the state |ψ〉 ∈ HA ⊗HB. Part A is now subject
to a measurement defined by an orthonormal basis in HA, e.g. {| a1〉 , . . . , | an〉},
where n is the dimension of HA. You can always write |ψ〉 as

|ψ〉 = | a1〉 ⊗ | v1〉+ . . . + | an〉 ⊗ | vn〉 ,

where | v1〉 , . . . , | vn〉 are unnormalised vectors in HB (some of the | vi〉’s may be
zero vectors).

• The probability of the outcome | ai〉 is pi = 〈 vi | vi 〉.
• If the | ai〉 outcome occurs, the final state of part A is | ai〉 and the final state

of part B is normalised | vi〉, that is, | vi〉 /
√
〈 vi | vi 〉.

This is equivalent to the following decomposition of the identity 1⊗ 1 on HA ⊗HB
into the orthogonal projectors,

(| a1〉 〈a1 |+ . . . + | an〉 〈an |)⊗ 1 =
n

∑
i=1
| ai〉 〈ai | ⊗ 1 =

n

∑
i=1

Pi,

where Pi = | ai〉 〈ai | ⊗ 1. You can easily check that (Pi)
2 = Pi and PiPj = Piδij.

• The probability of the outcome | ai〉 is pi = 〈ψ | Pi |ψ〉.
• If the | ai〉 outcome occurs, the final state of the system is

|ψ〉 −→ Pi |ψ〉√
〈ψ | Pi |ψ〉

= | ai〉 ⊗
| vi〉√
〈 vi | vi 〉

3.7. Example. As an example consider a pair of qubits in the state

|ψ〉 = 1√
2
(| 00〉+ | 11〉) .

We now perform the measurement on the first qubit in the basis

{| a1〉 , | a2〉} =
{

1√
2
(| 0〉+ | 1〉), 1√

2
(| 0〉 − | 1〉)

}
The first method requires to express |ψ〉 as

|ψ〉 = | a1〉 ⊗ | v1〉+ | a1〉 ⊗ | v1〉 .

You can easily show (I hope) that

| v1〉 =
1
2
(| 0〉+ | 1〉), | v2〉 =

1
2
(| 0〉 − | 1〉).

Thus the probability of the outcome | a1〉 is 〈 v1 | v1 〉 = 1
2

2
+ 1

2
2
= 1

2 and if the
outcome | a1〉 occurs the final state of the first qubit is | a1〉 and the final state of the
second qubit is | v1〉 (which happens to be normalised in this particular case).

If you choose the second method then you write

P1 = | a1〉 〈a1 | ⊗ 1 =
1
2
(| 0〉 〈0 |+ | 1〉 〈1 |+ | 0〉 〈1 |+ | 1〉 〈0 |)⊗ 1,

evaluate

P1 |ψ〉 =
1

2
√

2
[(| 0〉+ | 1〉)⊗ | 0〉+ (| 0〉+ | 1〉)⊗ | 1〉]

=
1

2
√

2
(| 0〉+ | 1〉)⊗ (| 0〉+ | 1〉)

and

〈ψ | P1 |ψ〉 =
[

1√
2
(〈0 | ⊗ 〈0 |+ 〈1 | ⊗ 〈1 |)

]
P1

[
1√
2
(| 0〉 ⊗ 0 + | 1〉 ⊗ 1)

]
=

1
4
〈 0 | 0 〉+ 1

4
〈 1 | 1 〉 = 1

2
.


