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Ideal 
value

Quantum Error Mitigation (QEM)

• Using additional circuit runs to reduce the bias in the expectation
value via post-processing.

Cai et al, Quantum error mitigation, Rev. Mod. Phys. 95, 045005 (2023). 

Mitigated 
value

Noisy 
value
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Dealing with dangerous errors

Not scalable ≠ Not useful

3arXiv:2501.05694



Applicability of QEM

• Cannot rely on QEM alone to deal with noise in large-scale
computation.

• It is always useful in the finite error regime (average number of errors
per circuit run ≲ 1), extending the computational reach (i.e. allowing
for larger and deeper computation) for noisy devices.

• This is especially relevant in the early fault-tolerant era, with non-
negligible finite logical errors remaining after QEC.
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Dealing with dangerous errors

Can QEM be applied to sampling-based
algorithms like QPE?
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QEM for Sampling Algorithm

• QEM use post-processing to combine the output from multiple noisy 
circuits to obtain the error-mitigated expectation values.

• The effective damage from noise is only reduced for the entire 
ensemble of circuit runs.

• The noise remains unchanged or even increases when zoom 
individual circuit runs.

• Sampling algorithms (e.g. quantum phase estimation): rely on 
accurate results for every circuit run, thus seems to be inherently 
incompatible with QEM (except for those uses post-selection).
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Error-mitigated State

• QEM can also be viewed as trying to extract the error-mitigated 
“states” 𝜌𝑒𝑚 out of the noisy circuit runs.

• The error-mitigated expectation value is given as Tr(𝑂𝜌𝑒𝑚). (𝑂 is
the observable of interests)

• The error-mitigated states 𝜌𝑒𝑚 is obtained via linear combination of 
output states from different circuit configurations.  

• This covers most mainstream QEM techniques.

7Cai et al, arXiv:2110.05389. 



Examples of Error-mitigated States

• Linear Zero-noise extrapolation (can be generalized to Richardson):
𝜌𝑝 = (1 − 𝑝)𝜌0+𝑝𝜌𝑒𝑟𝑟  ⇒  𝜌0 = 𝜌𝑒𝑚 ∝ 𝑝2𝜌𝑝1

− 𝑝1𝜌𝑝2

• Probabilistic error cancellation for bit-flip noise:
𝜌 = (1 − 𝑝)𝜌0+𝑝𝑋𝜌0𝑋 ⇒  𝜌0 = 𝜌𝑒𝑚 ∝ (1 − 𝑝)𝜌 − 𝑝𝑋𝜌𝑋

• Also applicable to other major QEM techniques like virtual
purification.

8Cai et al, arXiv:2110.05389. 



QEM for Recovering Output Distribution

• Setting: Noiseless circuit gives the ideal output distribution 𝑝0 𝑧 for
binary strings 𝑧, but noise corrupts the output distribution to 𝑝 𝑧 .

• Goal: obtain some error-mitigated distribution 𝑝𝑒𝑚 z .

• Insight 1: The probability of obtaining a given output string 𝑧 is simply 
the expectation value of the observable Π𝑧 = |𝑧⟩⟨𝑧|. 

• i.e. the ideal and noisy output distributions are
𝑝0 z = Tr Π𝑧𝜌0 , 𝑝 z = Tr Π𝑧𝜌

• The error-mitigated distribution is
𝑝𝑒𝑚 z = Tr Π𝑧𝜌𝑒𝑚
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QEM for Recovering Output Distribution

• However, there are exponentially many observable Π𝑧! 

• Insight 2: by running the circuit and measuring in the computational 
basis which output the string 𝑧′ in a given run, we have actually 
obtained one sample for all {Π𝑧} with 
• one sample of 1 for the Π𝑧 with 𝑧 = 𝑧′

• one sample of 0 for the Π𝑧 with 𝑧 ≠ 𝑧′
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QEM for Recovering Output Distribution

• Combining the two insights: obtaining error-mitigated distributions
𝑝𝑒𝑚 z = Tr Π𝑧𝜌𝑒𝑚  from error-mitigated states 𝜌𝑒𝑚 is efficient (by
measuring in the computation basis to obtain {Π𝑧}).

• Existing mainstream QEM techniques can be used to extract error-
mitigated “states” 𝜌𝑒𝑚, thus can be straightforwardly extended to
extract error-mitigated distributions.

11



PEC Example

• Probabilistic error cancellation for bit-flip noise:

𝜌 = (1 − 𝑝)𝜌0+𝑝𝑋𝜌0𝑋 ⇒ 𝜌0 = 𝜌𝑒𝑚 =
(1 − 𝑝)𝜌 − 𝑝𝑋𝜌𝑋

1 − 2𝑝

• Implementation:

1. Sample 𝜌 and 𝑋𝜌𝑋 with probability (1 − 𝑝) and 𝑝, respectively.

2. Measure in computation basis {𝑍𝑖}, post-process to obtain the set
of observables {Π𝑧}.

3. If 𝑋𝜌𝑋 is sampled, attach minus sign to the output.

4. 𝑝𝑒𝑚 z is estimated by taking the average over all samples of Π𝑧
and renormalise the result with the 1 − 2𝑝 −1 factor.
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QEM for Recovering Output Distribution

Given the error-mitigated state as a linear combination of output states
from different noisy circuit configurations.

1. Sample from the distribution of circuit configuration.

2. Measure in computation basis {𝑍𝑖}, post-process to obtain the set
of observables {Π𝑧}.

3. Attaching minus sign to the output according to the circuit
configuration or measurement results of additional observable.

4. Obtained one sample of {0, ±1} for every Π𝑧 in each run.

5. 𝑝𝑒𝑚 z is estimated by taking the average over all samples of Π𝑧,
and multiply the result with a normalisation factor 𝐴.

13



Sampling overhead

• Let us consider the trivial observable 𝐼:

 መ𝐼 = σ𝑧
෡Π𝑧 ⇒ Var[ መ𝐼] = σ𝑧 Var[෡Π𝑧]

• i.e. the variance of estimating a single observable 𝐼 is the same as the
total variance of estimating the probability of all 𝑧, i.e. the entire
probability distribution.

• For a given number of circuit runs, the total variance achieved for all 
entries in the entire estimated distribution is actually similar to the 
variance of one single observable. 
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How to sample from the QEM distribution?

• Without QEM, when measure 𝑧 in a circuit run, we put one sample
into the “bucket” corresponding to outcome 𝑧.

• With QEM, when measure 𝑧 in a circuit run, there is also a additional
sign associated with the circuit configuration we are running:

• +ve sign: add one sample into the “bucket” corresponding to
outcome 𝑧

• -ve sign: remove one sample from the “bucket” corresponding to
outcome 𝑧
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How to sample from the QEM distribution?

• There can be negative number of samples! Esp. when the number of
circuit run is small.

• When comes to interpretation of results, these negative number can
effectively be treated as zero since any components below zero are
entirely due to shot noise.
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Application to Quantum Phase Estimation

• Considering using quantum phase estimation for obtaining ground
state energy.

• Instead of trying to obtain the whole distribution, we are trying to
obtain the smallest string from the output distribution.

• Cannot simply output the smallest string from the estimated error-
mitigated distribution, since shot noise can turn zero-probability
entries to non-zero.
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Application to Quantum Phase Estimation

• An additional step to test whether an entry is likely to be zero or not.

• Set a threshold probability 𝑝th(𝑧) for each entry such that
• Ƹ𝑝em 𝑧 ≤ 𝑝th 𝑧 ⇒ Accept null: 𝑝em 𝑧 = 0

• Ƹ𝑝em 𝑧 > 𝑝th 𝑧 ⇒ Accept null: 𝑝em 𝑧 > 0

• 𝑝th 𝑧 can be set using:
• Proportional to the sample standard deviation of the Ƹ𝑝em 𝑧 estimator.

• Known lower bound of the probability of the smallest string.
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Numerical Simulation

• QPE with 4-bit precision

• Circuit error rate ∼ 0.6

• 106 runs
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• Total square errors reduced from
0.297 to 0.004

• Valid threshold: 0.03 < 𝑝th < 0.16



Summary

• QEM can be used for recovering the output distribution and
also sampling from it.

• Mitigating errors in the entire distribution is as cheap as one 
observable.

• Outlook:
• Explicit analysis for more QEM techniques and more

applications. Going
• Beyond linear QEM.
• Direct mitigation for a specific algorithm without

estimating/sampling the distribution
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